
MASTER PROJECT IN ROBOTICS,
SECOND CYCLE, 30 CREDITS
STOCKHOLM, SWEDEN 2021

Towards Real Time
Deep Learning Tubes:
Trajectory Tracking
with a Quadrotor

EPFL Thesis Report

Maxime Boutot

EPFL ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
SCHOOL OF ENGINEERING, SECTION MICROTECHNIQUE

Authors
Maxime Boutot
School of Engineering, Robotics
EPFL Ecole Polytechnique Fédéral de Lausanne

Place for Project
Stockholm, Sweden
Smart Mobility Lab, KTH Royal Institute of Technology

Examiner

Prof. Colin Jones
DAutomatic Control Laboratory
EPFL Ecole Polytechnique Fédéral de
Lausanne

Prof. Dimos Dimarogonas
Division of Decision and Control Systems
KTH Royal Institute of Technology

Supervisor

Mr. Emilio Maddalena
Automatic Control Laboratory
EPFL Ecole Polytechnique Fédéral de
Lausanne

Mr. Pedro Roque
Division of decision and control system
KTH Royal Institute of Technology

05/03/2021

ii

Abstract

Unmanned Vehicles is a fast­growing robotics area due to their vast application

scenario and ability to perform tasks otherwise impossible. A particular branch,

Unmanned Aerial vehicles, specifically multirotor, has seen an increasing interest in

research due to their mechanical simplicity and agility.

The multiplication of multirotor applications increases the interface with humans and

the number of different environments. Some of these applications can be sensitive, and

the question of safety arises. The users will need guarantees on the system’s behavior.

Model Predictive Control in its robust form is particularly suitable to answer these new

challenges.

This field of research brought a lot of attention and produced encouraging results.

However, translate these results to practical implementation remain an unresolved

issue for large and fast dynamics.

This work presents a new lead to overcome this last step using deep learning estimation

for tube­MPC. Supported by theoretical basis, some simulations are performed to

validate this new approach. Then, the reported hardware experiments shows that it

can meet the requirements of real­life implementations.

iii

Acknowledgements

I would like to thank Pedro Roque for his support, encouragement, and feedback

throughout this thesis’s writing. Your guidance helped me stay motivated and on

course. Thanks to Prof. Colin Jones and Emilio Maddalena from EPFL Automatic

Control Lab 3 for their confidence, availability, and feedback through this project. I

also want to thank Prof. Dimos Dimarogonas and the Smart Mobility Laboratory for

their warm welcoming and for allowing me to access the infrastructure to perform

experiments during these exceptional times. Finally, a particular thought to my family

and friends that supported me all along with my studies.

iv

Contents

1 Introduction 1
1.1 Background and Motivation . 3

1.2 Contribution . 5

1.3 Outline . 6

2 System description 7
2.1 Preliminaries . 7

2.2 Euler angles . 11

2.3 Quadrotor mathematical model . 13

2.3.1 Kinematic . 13

2.3.2 Dynamic . 14

2.3.3 State­space model . 16

2.3.4 Reduced model . 17

2.3.5 Linearization . 17

3 Controller design 19
3.1 Nonlinear Model Predictive Control . 19

3.1.1 Formulation . 19

3.1.2 Stability . 21

3.1.3 Inherent robustness . 22

3.2 Tube based Model Predictive Control 23

3.2.1 Description . 23

3.2.2 Nominal trajectory . 26

3.2.3 Stabilazing gain for Tube MPC 27

3.2.4 DeepLearning tube estimation 29

4 Experimental Validation 31

v

CONTENTS

4.1 Simulation setup . 32
4.1.1 Introduction to ROS . 32
4.1.2 GAZEBO simulation tool . 33
4.1.3 PX4 Autopilot . 34
4.1.4 Overview . 36

4.2 Solvers . 37
4.2.1 CasADI . 37
4.2.2 acados . 38
4.2.3 Comparison . 38

4.3 Trajectory generation. 39
4.3.1 Polynomial trajectory . 40
4.3.2 NMPC trajectory . 41

4.4 Deep­learning for tube estimation. 43
4.5 Experimental setup . 43

4.5.1 Hardware quadcopter . 43
4.5.2 Motion capture . 44
4.5.3 Overview . 44

5 Result 46
5.1 Python fundamental validation . 46

5.1.1 Setpoint . 46
5.1.2 Trajectory . 49
5.1.3 Inherent stability . 51

5.2 Experimental validation . 54
5.2.1 Gazebo simulation . 54
5.2.2 Hardware . 56

5.3 Tube estimation . 58
5.3.1 Data­set . 59
5.3.2 Training . 61
5.3.3 Results . 63

6 Conclusions 69
6.0.1 Future Work . 69

References 71

vi

Chapter 1

Introduction

Automation of repetitive tasks and missions has always been a paramount concern

for human beings. In the last decades, this motivation led to the arising of robotics.

Pushed by an active community of scientists and industrial progress, this specific

automation area aims to bring smarter machines to work and act aside humans in the

same society. Robots can take many shapes and functionalities, from vacuum cleaners

to exoskeletons and autonomous cars, passing by industrial arms. A particular branch

of robots called Unmanned Vehicles (UV) presents spectacular improvements during

the last years due to intensive research. Threemain categories raise from it, Unmanned

Aerial Vehicle (UAV),UnmannedGroundVehicles (UGV), andUnmannedUnderwater

Vehicle (UUV).

Figure 1.0.1: From left to rigth, an example of UAV (Flyability),
UGV (BostonDynamics) and UUV (Maracoos)

This work will focus on UAVs as they are becoming more and more present in the

market under various applications due to their flexibility, deployment convenience,

1

CHAPTER 1. INTRODUCTION

and cost­efficiency. Among UAVs, it is possible to distinguish three main categories

with (i) fixed wings drones, (ii) multi­copters, and (iii) vertical take of landing (VTOL),

presenting an end­less diversity of configurations and possibilities. One can cite the

video­making civilianmarket (DJI, Parrot), agriculturemapping (senseFly), industrial

installation inspection (Flyability, Flybotix), andmilitary drones. The latest significant

interest is drones for delivery in limited access areas (Zipline, Rigitech), from packages

to sensible medical supplies.

Figure 1.0.2: From left to rigth, an example of Fixed wings
drones (ZipLine), multicopters (Parrot) and VTOL drones

(Rigitech)

In this new dynamic, the question of safety needs to be brought up. Indeed, the

multiplication of drones in society leads to closer interactions between humans and

UAVs, and the increasing task’s sensibility calls for strong guarantees on their behavior.

In this work, the utilization of Model Predictive Control (MPC) in its robust form is

proposed to meet these challenges. This control technique has recently drawn much

attention due to its several advantageous proprieties. (Findeisen et al. 2003) :

• Consideration of nonlinear systems with multiple inputs and outputs.

• Consideration of constraints on states and inputs.

• Rigorous stability and robustness conditions.

However, behind these advantages, some challenging obstacles remain to be overcome

in the UAV control framework applied to safety­critical systems subject to uncertainty.

2

CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

In the described framework, the definition of the control algorithm used to define

UAVs’ behavior plays a central role. Flying robots will be asked to carry out tasks

in a changing and challenging environment where the surrounding can be tough to

predict. The usual control approach based on pre­computed policies can have such

problems due to the lack of online system knowledge. Moreover, the interactions of

the robots with their environment will be subject to constraints. These constraints

act for their proper safety as well as the operator safety and physical limitations.

Ensuring rigorous stability and robustness conditions while enforcing constraints on

the system is a challenge that can be overcome only by a few techniques. One of these

techniques draws much attention from the scientific community, Model Predictive

Control (MPC). Theorized in the early 60’s (E. B. Lee andMarkus 1967 J. H. Lee 2011),

this control technique inherits from optimal control theory and aims to use a model of

the system to predict and optimize the future inputs such as the predicted behavior is

optimized. In essence, MPC is built upon the repetitive solution of an optimal control

problem computed online, in opposition to many classical control theories based on

pre­computed control laws (Faulwasser 2012). To perform such a task, MPC required

fourmain ingredients: amodel, a cost objective to beminimized, some constraints and

the system state information at each sampling time. It then followed the pattern :

• At a sampling time t obtain a state measurement xk.

• Predict the system behavior for the T next steps using system model, a set of

admissible open­loop control actions, and a cost objective to be minimized.

• Apply the optimal open­loop input signal u.

• Continue with first step.

The number of future steps taken in the optimization process is called the horizon (T).

Intuitively, pushing the horizon to infinite gives all the required knowledge to ensure

an optimal response but, in practice, leads to untractable computation time. Tuning

the horizon parameter has a significant impact on the performances.

At first, MPC suffered from the lack of computation power and techniques to solve the

optimization problem in a satisfying amount of time. Based on the Hamilton­Jacobi­

Bellman theory (Dynamic Programming), the optimal input calculation procedure

asks for considerable resources. Hence until the end of the ’90s, MPC could mostly be

3

CHAPTER 1. INTRODUCTION

seen in heavy industries such as petrochemical (Qin and Badgwell 2003). Indeed, the

slow dynamics of such a system relax time constraints and make the benefits of MPC

worth using. However, considering fast dynamics with high dimensional states prone

to instability, such asUAVs, asked formore time. In the first decade of thismillennium,

the progress made allowed to see works as Singh and Fuller 2001 and Richards and

How 2005 dealing with MPC for UAV but the challenge of real­time implementation

held until Raemaekers 2007.

However, the necessity of large computational power requirements is just one of the

challenges presented by MPC. Indeed, the stability of the system is crucial propriety

of deploying it in a real system. Unfortunately, it has been shown that stability is not

guaranteed for a control policy based on input optimization (Rudolf Kalman 2001).

Thus, multiple strategies have been developed throughout the years to enforce the

control system’s stability, see D. Q. Mayne, J. B. Rawlings, et al. 2000 and H. Chen

and Allgöwer 1998b. In the specific framework of the finite horizonMPC for nonlinear

system (NMPC), one approach enforces the optimal trajectory to end in a stabilizing

invariant set, often taking the neighborhood of the desired setpoint. In addition, it is

necessary to give a precise shape to the cost objective, adding a term for the prediction’s

last step. (W.­H. Chen, O’Reilly, and Ballance 2003 Scokaert and James B. Rawlings

1996 Valluri and Kapila 1998). This approach presents several advantages: recursive

feasibility can be shown, and the forecasting horizon can be reduced without severe

loss of performances, leading to the reduction of the computational burden.

Nevertheless, even if NPMC research shows strong system stability results, uncertainty

can arise and violate these proprieties. A real system deployed in an uncontrolled

environment will necessarily present some additional noise or model imprecision.

Based on this plant model mismatch, one needs to add additional guarantees to ensure

that the system will not suffer a significant performance drop. These considerations

add an extra level of complexity. Indeed, even if NMPC presents some inherent

robustness proprieties (Allan et al. 2017, James B. Rawlings 2017a), if the uncertainty

becomes prepotent and the system is subject to state constraints, the conflict can

quickly lead to failure.

For these reasons, robust MPC receives much attention from the research community,

and a new technique called feedback MPC emerged James B. Rawlings 2017b. It is

well known that, in control, the feedback strategy archives superior performances with

respect to the open­loop strategy in a context of external disturbance. Rather than

4

CHAPTER 1. INTRODUCTION

applying an open­loop input resulting from the optimization problem, the feedback

input results from a feedback policy based on the system’s actual state and the open­

loop input. This policy determination is an arduous task in the nonlinear case, and

much of the research effort has been devoted to forms a feedback MPC that sacrifices

optimality for simplicity. One approach resulting from these researches is the tube­

based approach. Tube MPC is based on the separation between a nominal system

driven by an open­loop MPC designed without any disturbance considerations and

the full system subject to a feedback policy. A tube is defined around the nominal

trajectory as all the possible disturbances realizations on the real system under the

given feedback policy’s action. The definition of such a tube can be based on previous

knowledge, stochastic assumption, or online learning, but it always needs tomeet some

robust criterion defined later in this work (Fan, J. Nguyen, et al. 2020 Berkenkamp

et al. 2017). While the computation and implementation of this tube is doable for

linear systemD.Mayne and Langson 2001 Chisci, Rossiter, and Zappa 2001, it become

intractable for large nonlinear system as UAVs. To overcome such limitation, Mayne

and Kerrigan present in David Q. Mayne and Eric C. Kerrigan 2007 a solution based

on local linearization and approximation of the tube using the Monte­Carlo method.

This method lays the foundation of robust MPC implementation on a real system,

and this work will present an extension of it. In parallel, Fan, Agha­mohammadi,

and Theodorou 2020 shows that an alternative of the Monte Carlo method for tube

estimation is possible using deep­learning quantile regression. This method aims

to consider the tube as a stochastic distribution of trajectories around the nominal

system and then estimate the quantiles to ensure with a given probability that the

systemwill remain inside the tube. The objective is then to propose a new combination

of these approaches to bring robust tube MPC from theoretical research to real­life

applications. In the next decades, robots and UVAs will become more present, and

the applications more sensible (drugs or blood delivery are some excellent examples).

These systems’ safety will become a critical question, and robust Model Predictive

Control could be the best answer.

1.2 Contribution

In this work, the focus will be on a subcategory of UAVs, which is multi­rotors drones.

Their fast and unstable dynamic is an excellent example of a challenging system

5

CHAPTER 1. INTRODUCTION

for robust MPC. Moreover, quad­copters are more and more present on the market

and will continue to grow as they present many advantages such as simplicity of

deployment and high maneuverability. With this project, the objective is to contribute

to bringing robust tubeMPC on real­life application by combiningDavidQ.Mayne and

Eric C. Kerrigan 2007 with the quantile regression approach developed by Fan, Agha­

mohammadi, and Theodorou 2020. This work sets foundations for in­depth research

by showing robust behavior and bringing proof of real­life implementation concepts.

Moreover, being driven by hardware implementation, this work will concatenate

several programming tools to provide a development platform for further research and

improvements.

1.3 Outline

This thesis is organized around 5 chapters describe as follow :

• Chapter 2 derives the model of the quad­copter used in this project and on which

the controller is based. The references frames are describes as well as the system

kinematic and dynamic.

• Chapter 3 gives the description of the control strategy. A brief overview of NMPC

is given before going into the robust tube­MPC and this project contribution.

Lastly, the deep­learning regression is exposed.

• Chapter 4 describs the experimental setup from trajectory generation to

hardware implementation passing by the different tools implemented. A general

overview is given as well as precise implementation details on the used solvers

ACADOS/CASADI, the simulation environment based on Gazabo and SITL, and

the hardware features.

• Chapter 5 show the validity of the presented approach by presenting experiments

results for robust behavior and quadrotor implementation.

• Chapter 6 conclude this theses and gives leads for further improvements.

6

Chapter 2

System description

According to the introduction, the focus will be put on the control of quadcopter UAV.

This chapter describes the configuration of such a robot, the mathematical model, and

the different frames in which it takes place. Finally, a state place model is derived and,

from that, a linear approximation.

2.1 Preliminaries

A quadcopter is an under­actuated aircraft with fixed pitch angle four rotors. Many

configurations are then possible, but the most widely used and used in this work is the

X configuration due to the increased stability and reactivity of the twomotors balancing

each ax. In this configuration, the quadrotor’s attitude and position can be controlled

to desired values by changing the four motors’ speed, generating torque thanks to the

difference between the four thrusts created by the rotating propellers. These propellers

are divided into two groups. In each group, two diagonally opposite motors can be

distinguished thanks to their rotation direction:

• front­left and rear­right propellers (numbers 3 and 4 in Figure 2.1.1), rotating

clockwise;

• front­right and rear­left propellers (numbers 1 and 2 in Figure 2.1.1), rotating

counter clockwise.

Six degrees of freedom are required in describing any time­space motion of a rigid

body aircraft. They are three barycentermovements and three angularmotions around

the barycenter, namely, forward and backwardmovements, lateral movement, vertical

7

CHAPTER 2. SYSTEM DESCRIPTION

Figure 2.1.1: X configuration of quadcopters, engine indexing and respective propellers
rotations

motion, roll, pitch, and yaw motions. Depending on the speed rotation of each

propeller, it is possible to identify the four basic actuations of the quadrotor (Figure

2.1.2): the thrust caused by the addition of rotors rotation, the yawing moment is

caused by the unbalanced of the four rotors rotational speeds, the pitchingmoment

and rolling moment caused by the difference of four rotors thrust, the gravity,

the gyroscopic effect, and the yawing moment (gyroscopic effect only appears in the

lightweight construction quadrotor).

Because of four inputs and six outputs in a quadrotor, such a quadrotor is considered an

underactuated nonlinear complex system. Some assumptions are made in the process

of quadrotor modeling: the quadrotor is a rigid body; the structure is symmetric; the

ground effect is ignored; the external forces other than the gravity are ignored. These

assumptions can seem heavy, but the project’s objective is to develop a robust control

technique that can be used even in the case of model approximation.

8

CHAPTER 2. SYSTEM DESCRIPTION

F1 + F2 + F3 + F4 = T (2.1)

(ω1 + ω2) > (ω3 + ω4) (2.2)

M2 +M4 > M3 +M1 (2.3)

M1 +M4 < M3 +M2 (2.4)

Figure 2.1.2: Basic actuation of the quadcopter. Thrust T (2.1), Yaw Ψ (2.2), Pitch Θ
(2.3), Roll Φ (2.4)

9

CHAPTER 2. SYSTEM DESCRIPTION

Before going into the mathematical description detail, it is necessary to introduce the

coordinates to describe the structure’s position and orientation. For the quadrotor,

it is possible to use two systems. The first is fixed, and the second is mobile. The

fixed coordinate system, also called inertial, is a system where the first Newton’s law is

considered valid. As fixed coordinate system, or E­Frame, we use the OENU systems,

where ENU stands for East­North­Up. As we can observe from Figure 2.1, its vectors

are directed Nord, East, and opposite to the center of the Earth.

Figure 2.1.3: ONED fixed reference frame.

The mobile reference system that we have previously mentioned is united with the

barycenter of the quadrotor. In the scientific literature Bresciani 2008 it is called

OB system or fixed body frame, B­Frame. Figure 2.2 illustrates the two coordinate

systems.

Figure 2.1.4: Fixed E­frame and B­frame mobile frame.

10

CHAPTER 2. SYSTEM DESCRIPTION

2.2 Euler angles

The Euler angles are three angles introduced by Leonhard Euler to describe a rigid

body’s orientation using a sequence of consecutive rotations. They are typically

denoted as ϕ ∈] − π, π], θ ∈] − π/2, π/2], ψ ∈] − π, π]. They can also describe the

orientation of a frame relative to another. In the present case, the Euler angle is used

to transform the mobile quadcopter body frame to the fixed inertial frame. Many

combinations of Euler angle are possible for such description Henderson 1977 but

the RPY (Roll­Pitch­Yaw) or ZYX convention is used in this work. This convention

describes the body frame orientation Θ into the intertial frame using the following

sequence of elementary rotation Bresciani 2008 :

xE = (Rz(ψ)Ry(θ)Rx(ϕ)) ∗ xB (2.5)

WithRz(ψ),Ry(θ) ,Rx(ϕ) define as follow.

Rz(ψ) =


cψ −sψ 0

sψ cψ 0

0 0 1

 Ry(θ) =


cθ 0 cθ

0 1 0

−sθ 0 cθ

 Rx(ϕ) =


1 0 0

0 cϕ −sϕ
0 sϕ cϕ

 (2.6)

where cψ = cos(ψ), sψ = sin(ψ), cθ = cos(θ), sθ = sin(θ), cϕ = cos(ϕ), sϕ = sin(ϕ).

Thus, the inertial frame coordinates and the body­fixed frame coordinates are linked

by the rotation matrixRΘ(ϕ, θ, ψ) ∈ SO(3):

xE = RΘ ∗ xB (2.7)

RΘ =


cψcθ −sψcϕ + cψsθsϕ sψsϕ + cψsθsϕ

sψcθ cψcϕ + sψsθsϕ −cψsϕ + sψsθcϕ

−sθ cθsϕ cθcϕ

 (2.8)

This matrix describes the rotation from the body reference system to the inertial

reference. Transposing it leads to the description of the rotation from the inertial frame

to the body­fixed frame.

11

CHAPTER 2. SYSTEM DESCRIPTION

Figure 2.2.1: Euler angles.

As for the quadcopter orientation, it is possible to relate the body frame angular velocity

in the inertial frame. It is therefore called Euler rates in the literature Bresciani

2008. The transfermatriceTΘ is then computed by evaluating the impact of individual

angular variations on the rotation matrix :

ωB =


ϕ̇

0

0

+Rx(ϕ)
−1


0

θ̇

0

+Rx(ϕ)
−1Ry(θ)

−1


0

0

ψ̇

 = TΘ
−1


ϕ̇

θ̇

ψ̇

 (2.9)

TΘ
−1 =


1 0 −sθ
0 cϕ cθsϕ

0 −sϕ cθcϕ

 TΘ =


1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕ/tθ cϕ/cθ

 (2.10)

Then, T represent the transformation from angular velocity to Euler Rate and T−1 does

the inverse operation. Note that tψ = tan(ψ), tθ = tan(θ) and tϕ = tan(ϕ).

12

CHAPTER 2. SYSTEM DESCRIPTION

2.3 Quadrotor mathematical model

This section aims to give a better understanding of the kinematic and dynamic models

of the quadrotor to provide a sufficiently reliable model for simulating and developing

of the control algorithms. The quadcopter is assumed to be a 6 DOF rigid body, and

thus Newton­Euler equations can be used. The development will take place in the

two frames explained in section 2.1.1. However, the rotational motion equation will

be expressed in the body frame for the following reason : :

• The inertia matrix is time­invariant.

• Advantage of body symmetry can be taken to simplify the equations.

• Measurements taken on­board are easily converted to body­fixed frame.

• Control forces are almost always given in body­fixed frame.

2.3.1 Kinematic

From the literature Bresciani 2008, the kinematics of a generic 6DOF rigid­body can

be describe as :

ξ̇ = JΘν (2.11)

where ξ̇ is the generalized velocity vector in the inertial frame, ν is the generalized

velocity vector in the body frame and JΘ in the transformation matrix.

ξ is composed of the quadcopter linear position ΓE ∈ R3[m] and angular orientation

ΘE ∈ R3[rad] such as :

ξ = [ΓE ΘE] = [x y z ϕ θ ψ]T (2.12)

Similarly, ν is composed of quadcopter linear velocity V B[m.s−1] ∈ R3 and angular

rate ωB[rad.s−1] ∈ R3 :

ν = [V B ωB] = [u v w p q r]T (2.13)

In addition, JΘ is composed of the two euler matrices RΘ and TΘ developed in section

13

CHAPTER 2. SYSTEM DESCRIPTION

2.1.2:

JΘ =

RΘ 03x3

03x3 TΘ

 (2.14)

Thus, the kinematic of the quadrotor is given by :

ẋ = u[cψcθ]− v[−sψcϕ + cψsθsϕ] + w[sψsϕ + cψsθsϕ]

ẏ = u[sψcθ] + v[cψcϕ + sψsθsϕ]− w[−cψsϕ + sψsθcϕ]

ż = −u[−sθ] + v[cθsϕ] + w[cθcϕ]

ϕ̇ = p+ q[sϕtθ] + r[cϕtθ]

θ̇ = q[cϕ]− r[sϕ]

ψ̇ = q[sϕ/tθ]− r[cϕ/cθ]

(2.15)

2.3.2 Dynamic

Concerning the dynamic part, the literature Bresciani 2008 gives the following generic

expressions for a 6 DOF rigid body describe by Newton­Euler equations in the body­

fixed frame: m(˙V B + ωB ∧ V B) = FB Newton’s law

Iω̇B + ωB ∧ I.ωB) = τB Euler’s equation
(2.16)

Where FB and τB are the vectors ∈ R3 containing, respectively, the total forces and

total torques applied to the body frame. I ∈ R3×3 is the diagonal inertia matrix with

[Ix Iy Iz] as diagonal vector and m the mass of the quadcopter. It is important to

state that two assumptions have been made in the previous statement. First, the body

frame’s origin should be coincident with the quadrotor’s barycenter, and second, the

body frame has to be alignedwith the body principal axes of inertia to keep the diagonal

shape of I. Both of these assumptions were made to keep the equations simpler.

FB and τB, the force and torque acting on the system, is composed of :

FB = mgRT
Θ.uz − ftu

′

z (2.17)

τB = τm (2.18)

Where g is the gravitational acceleration, ft the total trust produce by the propellers

14

CHAPTER 2. SYSTEM DESCRIPTION

and τm the torque generated by the difference of rotors speed. Note that the parasite

forces or torque such as wind effect and gyroscopic moments have not been taken into

account in the development. Indeed, the objective will be to develop a control strategy

robust enough to not suffer from these approximations.

Using (2.17) and (2.18) in (2.16) gives the following description of the system’s dynamic

: 

u̇ = rv − qw + g[sθ]

v̇ = pw − ru− g[sϕcθ]

ẇ = qu− pv − g[cϕcθ] +
ft
m

ṗ = Iy−Iz
Ix

rq + τx
Ix

q̇ = Iz−Ix
Iy

rq + τy
Iy

ṙ = Ix−Iy
Iz

rq + τz
Iz

(2.19)

However, another approach would be to describe the quadrotor position’s dynamic

using the inertial frame as developed in T. Nguyen et al. 2017. This allows having

an use­full alternative form of the dynamic model used in the state­space model to

simplify the control and implementation study. Rewriting Newton’s equation in the

E­frame gives :

mΓ̈E = RΘ.F
B = mguz − ftRΘ.u

′

z (2.20)

withRΘ defined in (2.8). Then, the new description of the dynamic is :

ẍ = ft
m
[sψsϕ + cψsθsϕ]

ÿ = ft
m
[−cψsϕ + sψsθcϕ]

z̈ = −g + ft
m
[cθcϕ]

ṗ = Iy−Iz
Ix

rq + τx
Ix

q̇ = Iz−Ix
Iy

rq + τy
Iy

ṙ = Ix−Iy
Iz

rq + τz
Iz

(2.21)

15

CHAPTER 2. SYSTEM DESCRIPTION

2.3.3 State­space model

The definition of the state­space model is the last part of the system description and

will summarize the previous sections. Such model is express by :

ẋ = f(x,u) (2.22)

One way to define the state of the system would be to use x the state of the quadrotor

written as :

x = [x y z ẋ ẏ ż p q r ϕ θ ψ]T ∈ R12 (2.23)

and u the input to the system such as :

u = [ft τx τy τz]
T = [ft τB]T ∈ R4 (2.24)

Thus, using (2.21) and (2.15), the state space model can be expressed as :



ẋ = ẋ

ẏ = ẏ

ż = ż

ẍ = ft
m
[sψsϕ + cψsθsϕ]

ÿ = ft
m
[−cψsϕ + sψsθcϕ]

z̈ = −g + ft
m
[cθcϕ]

ṗ = Iy−Iz
Ix

rq + τx
Ix

q̇ = Iz−Ix
Iy

pr + τy
Iy

ṙ = Ix−Iy
Iz

pq + τz
Iz

ϕ̇ = p+ q[sϕtθ] + r[cϕtθ]

θ̇ = q[cϕ]− r[sϕ]

ψ̇ = q[sϕ/tθ]− r[cϕ/cθ]

(2.25)

16

CHAPTER 2. SYSTEM DESCRIPTION

2.3.4 Reduced model

Due to implementation constraints that will be develop later one, a reduced model is

presented. This model will be referenced as :

ẋ = fr(x,u) (2.26)

and the state and input are redefine as :

x = [x y z ẋ ẏ ż ϕ θ ψ]T ∈ R9 (2.27)

and u the input to the system such as :

u = [ft px qy rz]
T = [ft ωB]T ∈ R4 (2.28)

Thus, using (2.21) and (2.15), the state space model can be expressed as :

ẋ = ẋ

ẏ = ẏ

ż = ż

ẍ = ft
m
[sψsϕ + cψsθsϕ]

ÿ = ft
m
[−cψsϕ + sψsθcϕ]

z̈ = −g + ft
m
[cθcϕ]

ϕ̇ = p+ q[sϕtθ] + r[cϕtθ]

θ̇ = q[cϕ]− r[sϕ]

ψ̇ = q[sϕ/tθ]− r[cϕ/cθ]

(2.29)

2.3.5 Linearization

As suggested in the project objectives, the robust MPC feedback policy will be based

on a linearized version of the quadcopter dynamic, reducing the overall computational

cost. This approximation will take place at each solving step to not be limited by the

validity region of the linearization. Thus, for each operating point (xL, uL) the linear

17

CHAPTER 2. SYSTEM DESCRIPTION

system take the form of :

ẋ = Ax+Bu (2.30)

with :

A =
∂f

∂x (x=xL)
B =

∂f

∂u (u=uL)
(2.31)

18

Chapter 3

Controller design

This chapter constitutes the core of this work as it describes the theoretical approach.

From the dynamic described in chapter 2, the objective is to present a new way to

implement robust MPC control for real­time application based on tube MPC and

deep learning quantile regression. This challenge has to be overcome while keeping

theoretical consistency.

3.1 Nonlinear Model Predictive Control

To set the basis of this work, a formal description of non­linear MPC (NMPC) with

finite time horizon T is presented. The stability is discussed for a system without

disturbances to introduce notations and tools for further development. Moreover,

the NMPC formulation will be used for trajectory generation purposes, as discussed

in section 4.2.

3.1.1 Formulation

The target system subject to NMPC control takes the form :

xt+1 = f(xt,ut) (3.1)

19

CHAPTER 3. CONTROLLER DESIGN

With f as described in the previous chapte ?? and discretized with a sampling period

δ and subject to the following constraints:

xt ∈ X, ut ∈ U, ∀t ≥ 0 (3.2)

where xt ∈ X ⊂ Rnx . is the state of the system, ut ∈ U ⊂ Rnu is the input applied to

the system. In this work U and X take the form :

X = {x ∈ Rnx | xmin ≤ x ≤ xmax}

U = {u ∈ Rnu | umin ≤ u ≤ umax}
(3.3)

where xmin, xmax, umin, umax are given constant vectors and ≤ element wise.

Let T ∈ N denote the planing horizon of the NMPC problem. In order to distinguish

clearly internal variable from system state, the notation xk|t is used. It denotes the

variable xk for k = 0, ..., T within the NMPC problem at time t. Then, x.|t denotes the

set of variables {xk|t}Tk=0. The finite horizon NMPC control can now be defined as the

repeated solution of the open­loop optimal control problem taking the form of :

min
u.|t∈U

J(x.|t,u.|t) (3.4)

with :

J(x.|t,u.|t) =
k=T∑
k=0

F (xk|t,uk|t) (3.5)

∀k = 0, ..., T (3.6)

subject to:

xk+1|t = f(xk|t,uk|t),

uk|t ∈ U, ∀k ∈ [0, T],

xk|t ∈ X, ∀k ∈ [0, T],

x0|t = xt

(3.7)

With J the cost function to be minimized and F the stage cost. F is often chosen as

quadratic for efficiency and simplicity purpose taking the form H. Chen and Allgöwer

1998b:

F (xk|t,uk|t) = xk|t
TQxk|t + uk|t

TRuk|t, (3.8)

20

CHAPTER 3. CONTROLLER DESIGN

Q ∈ Rnx∗nx , R ∈ Rnu∗nu both being positive definite are symmetric weighting matrices.

Note the initial condition, the system model is initialized by the actual system state,

that is in general assumed to be measured or must be estimated. Let x∗
.|t and u∗

.|t be

minimizer of the problem at time t and thus the solution of the NMPC problem.

The closed­loop control is set to ut = u0|t
∗ and apply to the system. Then the system

state is measure and the NMPC is solve again.

3.1.2 Stability

Ensure stability for the finite horizon closed loop NMPC as it can be done for infinite

horizon is unfeasible with the presented formulation (Findeisen 2004). The basic idea

to overcome this limitation is to approximate an infinite horizon prediction by adding

an additional terminal cost E(xT |t) into the finite horizon formulation and impose a

final constraint on xT |t as describe by H. Chen and Allgöwer 1998a :

min
u.|t∈U

J(x.|t,u.|t)

(3.9)

with :

J(x.|t,u.|t) =
k=T∑
k=0

F (xk|t,uk|t) + E(xT |t) (3.10)

∀k = 0, ..., T (3.11)

subject to:

xk+1|t = f(xk|t,uk|t),

uk|t ∈ U, ∀k ∈ [0, T],

xk|t ∈ X, ∀k ∈ [0, T],

xT |t ∈ Xf ,

x0|t = xt

(3.12)

To give an intuition, the idea is to be sure that the trajectories of the closed­loop

system remain within some terminal region Xf for the time interval [t + T,∞). Xf

21

CHAPTER 3. CONTROLLER DESIGN

is constructed such as a local state feedback law u = κ(x) asymptotically stabilize the

nonlinear system in Xf and renders Xf invariant.

Definition 3.1.1 (Positive invariant set) A closed set A is positive invariant for

the system xt+1 = f(xt) if x ∈ A implies f(xt) ∈ A.

Thus, due to the invariant nature of Xf , it suffices to impose an additional terminal

constraint xT |t ∈ Xf to ensure that the trajectory indeed remains in Xf for

infinity.

It is common practice to define the local state feedback law as u = KLQRx with KLQR

being the LQR stabilizing gain computed offline. The terminal cost P can be extracted

from this local state feedback law as solution of the Riccati equation.

Details of stability proof have been voluntary omitted and interested reader could refer

toH. Chen andAllgöwer 1998b and Lazar and Spinu 2015 for terminal set computation

and terminal cost necessary proprieties.

3.1.3 Inherent robustness

NMPC in its stable formulation shows some inherent stability propriety for vanishing

small perturbations. Proof and developments can be found in James B. Rawlings

2017a, Allan et al. 2017 , Yu, Reble, et al. 2011 . Even if this work does not go into

inherent stability details, it is important to note that it exists and can be used for

experiments. However, for real­life applications where strong guarantees are needed,

it is preferable to design a robust controller i.e., able to cope with bounded uncertainty

(James B. Rawlings 2017a).

22

CHAPTER 3. CONTROLLER DESIGN

3.2 Tube based Model Predictive Control

Tube­based model predictive control constitutes an implementable form of feedback

MPC addressing disturbances in the controlled system. In this section, the main

features and results of this technique are described as well as the limitations and how

this work presents a new way to use it.

3.2.1 Description

The system to be controlled is described as :

xt+1 = f(xt,ut) +wt (3.13)

With f as described in the previous chapter 2.22, discretized with sampling period

of δ, xt ∈ Rnx the system state, utinRnu the control input and wt an additive

disturbance assumed to lie in a setW, compact and containing the origin. This system

is constrained according to xt ∈ X and ut ∈ U ∀t.
From this, one can define a nominal system :

zt+1 = f(zt,vt) (3.14)

This nominal system does not take into account the disturbance and is a useful tool for

further developments. zt is the nominal state and vt nominal control input both under

constraints such as zt ∈ Z and vt ∈ V.

The main objective is then to design a controller to steer the system’s initial state

to the neighborhood of an equilibrium state of the nominal system against every

admissible disturbance. This has to be done respecting the state constraints xt ∈
X and input constraints ut ∈ U. Two main issues have to be overcome, robust

stability (stability for every admissible disturbance sequence) and robust performance

(adequate performance for every admissible disturbance sequence).

The NMPC formulation has to be modified for a feedback form to deal with these

problems. In a more general consideration, feedback forms give best performances in

control theory as the system’s actual state (disturbance included) is taken into account

into the generated command. In feedback MPC, the control sequence is replaced by

a policy µ = {µ0, µ1...} i.e., a sequence of control law and aim to ensure that the

deviation of the real system from the nominal one is much less than for the open­

23

CHAPTER 3. CONTROLLER DESIGN

loop MPC. Feedback MPC is an active field of research as the computation of these

policies is usually prohibitive (D. Q. Mayne, E. C. Kerrigan, et al. 2011). Two main

categories arise for robust implementation. Min­max feedback MPC is one of those

two and provides satisfying results but are impossible to implement, the computational

cost increasing exponentially with system’s dimension (Qin and Badgwell 2003). The

second one is the subject of this work and is called Tube­MPC.

Tube MPC is an implementable form of feedback MPC aiming to build a tube centered

on the nominal system’s trajectory and whose cross­section is a robust positively

invariant set for the system.

Definition 3.2.1 (Robust positive invariant set) A closed set Y is Robust

positive invariant for the system defined in 3.13 if

xt ∈ Y ⇒ xt+1 ∈ Y ∀wt ∈ W, ∀t N+. (3.15)

To give an intuition, a system under open­loop or feedback control, trying to follow a

given trajectory while being subject to uncertainty, will create a bundle (or a tube) of

alternative trajectory around it. Each of those corresponds to a particular realization

of the noise. Robust tube­MPC is all about shaping this tube (i.e., the possible

trajectories) to ensure constraints satisfaction inside it. The shape of the tube depends

on the initial state and the chosen feedback policy. However, as explained, finding

the right policy is challenging and extracts the tube’s shape even more in non­linear

systems.

D. Q. Mayne, E. C. Kerrigan, et al. 2011 propose an approach based on an ancillary

NMPC controller used to maintain the disturbed system close to the nominal one by

minimizing the cost of the deviation. There is no state or input constraints for this

second NMPC but a terminal cost pushing the final state toward the robust invariant

set. This technique gives strong guarantees on robust behavior, and the flexibility

of tuning possibilities helps to reject disturbance more effectively. However, even if

presented as computationally efficient, this method requires solving two consecutive

online NMPC. The example presented in D. Q. Mayne, E. C. Kerrigan, et al. 2011 is

based on slow dynamics compared to the fast dynamic of a UAV explaining the good

results. However, in the framework of this project, the computational burden of the

aforementioned technique is too heavy.

24

CHAPTER 3. CONTROLLER DESIGN

Going back for a more general approach, it is interesting to define :

et+1 = xt+1 − zt+1 (3.16)

Then, let the input ut of the system 3.13 be:

ut = vt + κ(et) (3.17)

It is now important to give the definition of robust control invariant set as in Yu, Maier,

et al. 2013.

Definition 3.2.2 (Robust Control invariant set) A set Ω ⊂ X ⊂ Rnx is robust

control invariant set for the system 3.16 if there exists a control law κ(.) with κ(.) +

vk ∈ U ⊂ Rnu such as for all xt0 ∈ Ω and allwt ∈ W, xt ∈ Ω for all t ≥ t0

Furthermore, if Ω can be defined as robust control invariant set for 3.16, Ω can also be

considered as robust invariant set for the real system 3.13 (Yu, Maier, et al. 2013).

According to Gao et al. 2014 and D. Q. Mayne, Seron, and Raković 2005, with Ω

robust invariant for the system 3.13 then, if the initial state x0 start sufficiently close

to the nominal state v0, the control law 3.17 will keep the trajectory within the robust

positively invariant set Ω centred at the predicted nominal trajectory, i.e the tube, for

all admissible sequencewk :

x0 ∈ {z0} ⊕ Ω ⇒ xk ∈ {zk} ⊕ Ω, ∀wk ∈ W, ∀k ≥ 0 (3.18)

This also suggest that if the a nominal solution can be found for the nominal system

under the tighten constraints :

Z = X⊖ Ω V = U⊖ κ(Ω) (3.19)

then the control law ut = vt + κ(et) will ensure constraint satisfaction for the real

system.

Note. According to Gao et al. 2014 ⊕ is define as the Minkowski sum and ⊖ the

Ponttryagin difference. The Minkowski sum of two polytopes P and P is a polytope:

P⊕Q = {x ∈ Rn : x+ q ∈ P, ∀q ∈ Q} (3.20)

25

CHAPTER 3. CONTROLLER DESIGN

And the Pontryagin difference of two polytopes P and P is a polytope:

P⊖Q = {x+ q ∈ Rn : x ∈ P, ∀q ∈ Q} (3.21)

Concerning the choice of κ, the choice of a stabilizing gain K is a choice often made in

the literature (Yu, Maier, et al. 2013, Gao et al. 2014).

ut = vt +Ket (3.22)

It is interesting to note that even D. Q. Mayne, E. C. Kerrigan, et al. 2011, proposing

an ancillary MPC controller, highlight the promising potential of a time changing gain

K such as:

ut = vt +Ktet (3.23)

The approach is chosen in this work and more details can be found later.

3.2.2 Nominal trajectory

The nominal system 3.14 constitutes a noise­less approximation of the real system and

will be used as a nominal trajectory. The formulation of the controllermeets theNMPC

formulation discussed below with :

min
v.|t∈U

J(z.|t,v.|t) (3.24)

with :

J(z.|t,u.|t) =
k=T∑
k=0

F (zk|t − rt+k,vk|t) + E(zT |t − rt+T) (3.25)

∀k = 0, ..., T (3.26)

subject to:

zk+1|t = f(zk|t,vk|t),

vk|t ∈ V, ∀k ∈ [0, T],

zk|t ∈ Z, ∀k ∈ [0, T],

zT |t ∈ Zf ,

z0|t = zt

(3.27)

26

CHAPTER 3. CONTROLLER DESIGN

With V,Z and Zf compact sub­sets of respectively U,X and Xf . The choice of theses

tightened sets V ⊂ U, Z ⊂ X and Zf ⊂ Xf will be discuss later. r. denotes the discrete

reference trajectory sample with a period δ. Finally E(.) is chosen as discussed in the

NMPC section.

3.2.3 Stabilazing gain for Tube MPC

The stabilizing gain used in the feedback policy :

ut = vt +Ket (3.28)

to maintain the state of the uncertain system close to the nominal trajectory can be

defined in several ways. It is crucial to keep in mind that this choice of gain molds

the shape of the robust invariant set Ω i.e. the shape of the tube and the tightened

constraints of the nominal system defined as 3.19

Yu, Maier, et al. 2013 propose a development starting from the Lipschitz propriety

of the system continuous dynamic in the set X to extract the associate constants. As

a reminder, the Lipschitz constant comes from the following equation for a given

continuous function g(x):

∥g(x1)− g(xx2)∥ ≤ L ∥x1 − xx2∥ (3.29)

The minimum value of L satisfying 3.29 is the Lipschitz constant. Base on this

development, the authors present a way to compute the gain K and the set Ω

offline, giving good online performances. However, it is highly conservative, and

the computation of this constant is not straightforward as the number of dimension

increase. The example presented holds for a system in R2, but the dynamic of the

quadcopter lives in R12.

In the framework of this work, the system f as defined in chapter 2 2.22 can be

linearized around a given equilibrium (xL, uL) point using the jacobian computation

with sampling period δ. Let :

xt+1 = Axt +But (3.30)

27

CHAPTER 3. CONTROLLER DESIGN

with:

A =
∂f

∂x (x=xL)
B =

∂f

∂u (u=uL)
(3.31)

xt ∈ Rnx state of the system, ut ∈ Rnu control input and A and B assumed to be

controllable, it exist a stabilizing gain KLQR result of the linear quadratic regulator

defined as :

J =
∞∑
k=0

(xt
TQxk + ut

TRuk) (3.32)

with Q ∈ Rnx∗nx , R ∈ Rnu∗nu the gainKLQR is define such as

ut = KLQR × xt (3.33)

KLQR = (R +BTPB)−1(BTPA) (3.34)

let P solution of the Riccati equation :

P = ATPA− (ATPB)(R +BTPB)−1(BTPA) +Q (3.35)

giving :

xt+1 = Axt +B(KLQRxt) = (A+BKLQR)xt (3.36)

is asymptotically stable (James B. Rawlings 2017c). Using this propriety of our system,

the feedback stabilizing gainK is chosen asKLQR. The same approach is described in

Gao et al. 2014 and can be compared as the linear version of tube MPC.(D. Q. Mayne,

Seron, and Raković 2005).

The question of the equilibrium point around which the system is linearized can be

discussed. Indeed, for computation efficiency reason, a right choice could be to find

KLQR off­line, taking as equilibrium point the hovering point of the quadcopter:

xL = 0 ∈ R12, uL = [−m ∗ g, 0, 0, 0] (3.37)

With g gravity and mmass of the system. However, this choice is highly conservative

and presents some risks as the linearization is only valid around the equilibrium point.

In the framework of this work, the linearization is performed at each step of the

trajectory i.e., for each sampling period δ to tackle this issue. The Riccati equation

has to be recomputed to obtainKLQR|t.

28

CHAPTER 3. CONTROLLER DESIGN

Finally, the feedback policy for the robust tube MPC controller use in this project is :

ut = vt +KLQR|t × (xt − zt) = vt +KLQR|tet (3.38)

3.2.4 DeepLearning tube estimation

The objective is now to define a way to compute the tube to guarantee robust constraint

satisfaction for the controlled system. Based on the previous choice of KLQR|t as

feedback gain, inspiration from the linear version can be interesting. Indeed, for a

linear system, an approximation of the robust invariant set can be computed using the

algorithm described in Rakovic et al. 2005. Such an algorithm proved its efficiency

but only for low dimension systems and, in the project’s situation, the dimension of

the dynamic makes it intractable.

Gao et al. 2014, uses an approach with fixed KLQR and develops a computation of the

robust invariant set using the Lipschitz constant associated with the system. However,

for the same reason mention in subsection 3.2.3, this technique is not implemented in

real life scenario.

We propose a more straightforward procedure to determine the tube by estimating it

using deep learning quantile regression. To give an intuition, the idea is to make the

system run multiple times in simulation under the action of the predefined feedback

policy but with a nominal system constrain by Z = X and V = U. The system will be

under disturbance, and a bundle of trajectories will be created around the reference

one. This bundle constitute an inner approximation of the tube as described earlier

and can be seen as a Monte­Carlo approximation of it. As explained by D. Q. Mayne,

E. C. Kerrigan, et al. 2011, an exact solution is not required inmany cases, and this kind

of approximation gives satisfying results even if transgression can occur. However, the

approach takes in their work only takes into account the maximum spreading on the

full trajectory and tightened these constraints using this fixed value forbidding time

varying tubes and giving a conservative approach.

With deep­learning quantile regression, the objective is to compute offline a time­

varying tube for the system under the action of the chosen feedback policy while

ensuring that the real system will stay inside the tube with a probability α. This

approach has roots in the work of Fan, Agha­mohammadi, and Theodorou 2020.

29

CHAPTER 3. CONTROLLER DESIGN

Let the coupled system be:

xt+1 = f(xt,ut) +wt

zt+1 = fz(zt,vt)

ωt+1 = fω(ωt)

P (d(xt, zt) ≥ ωt) ≥ α, t ∈ N+

(3.39)

with ωt ∈ Rnx being the tube width with all the elements greater than 0. This coupled

system define a tube around the nominal trajectory within which the real system will

stay with a probability greater than α ∈ [0, 1]. The distance function d(xt, zt) is taken

as ∥xt − zt∥2.
Let Ωω(t) ⊂ X be a set :

Ωωt = {x ∈ X, d(x, zt) ≤ ωt} (3.40)

According to the last definitions,3.39 define a sequences of sets {Ωωt}Tt=0 that form a

tube around the nominal trajectory. The objective is then to learn it.

Deep learning quantile regression allow to do it, given data collected by making the

system travel though reference trajectory. The objective is to learn fω. For a given data

point {xt,ut,xt+1, zt,vt, zt+1, t} let ωt = d(xt, zt) be the input tube width to fω and

ωt+1 = d(KLQR|txt+1, zt+1) the candidate output. The candidate tube width at t + 1

must be less than the estimate of the tube width at t+ 1 i.e ωt+1 ≤ f θω(ωt). To train the

network f θω the following check loss function is used :

Lαω(θ, δ) = Lα(ωt+1, f
θ
ω(ωt))

Lα(y, r) =

α | y − r |

(1− α) | y − r |

(3.41)

An additional point is that it is possible to playwith alpha to vary the acceptablemargin.

Details about deep learning quantile regression are omitted for brevity but can be found

in Rodrigues and Pereira 2020 ,Koenker and Bassett 1978, Taylor 1999 Fan, Agha­

mohammadi, and Theodorou 2020. Once the training procedure is done, the time

varying tube {Ωωt}Ttt=0 is used to tightened the nominal constraints such as :

Z = {z ∈ Rnz | zmin + ωt ≤ z ≤ zmax − ωt}

V = {v ∈ Rnv | vmin +KLQR|tωt ≤ v ≤ vmax −KLQR|tωt}
(3.42)

30

Chapter 4

Experimental Validation

This chapter describes the experimental setup used to validate the selected

approach. Some first validation steps are performed with a custom Python

package integrating simulation environment, MPC algorithm, Quadcopter model,

and trajectory generation. Then, based on Robot Operating System (ROS), custom­

developed nodes in Python/c++ and Gazebo simulator engine, some high fidelity

simulations are performed. Finally, the objective is to run some tests on the hardware

quadrotor. The workflow is sequenced in three steps :

Figure 4.0.1: 1. Python validation step, 2. High fidelity simulation, 3.Hardware
validation

The objective is tomake the hardware system run in real­timewith a control frequency,

at least equal to 50Hz. The developed framework should allow generating trajectories

that a quadrotor can follow. In a mindset of continuity for this project all the tools

and custom package are chosen or developed to be flexible and reusable for further

developments.

31

CHAPTER 4. EXPERIMENTAL VALIDATION

4.1 Simulation setup

4.1.1 Introduction to ROS

Robot Operating System (ROS) is a flexible framework for robotic research, based on a

collection of tools, libraries, and conventions that simplify creating complex and robust

behavior. This tool is a reference in robotic research and industry. ROS was designed

with open­source inmind, intending that users would choose the configuration of tools

and libraries that interactedwith the core of ROS so that users could shift their software

stacks to fit their robot and application area. This state of mind is producing results as

most of the available libraries and tools have been developed by the community apart

from the core structure.

ROS implements a compliant inter­machine/inter­process

communication architecture. Different processes are called nodes and communicate

to each other through topics. These topics are created and handle by a master and are

implemented this way:

1. A first node, called publisher, advertises the master that he will publish data.

2. The master add an open topic on which the node will publish

3. A second node, called subscriber, subscribe to the created topic through the

master

4. From this point, every time that the publisher will publish need data, a callback

function will be called in the subscriber.

A node can also advertise a service which is more an action that returns a unique

response. Note that the node can be developed in Python or C++ without any

compatibility issue as ROS provides an abstraction layer with its communication

system.

This simple architecture provides end­less possibility and flexibility. Moreover, nodes

can be hosted by different machines as long as each node can communicate with the

mainmaster. This feature allows fast deployments from simulation to real­life systems

with distributed setups.

32

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.1.1: Fondations of ROS inter­process communication features.

Several versions of ROS exist, but this work uses ROS Melodic, and all the package

developed will only be supported by this distribution. Note that this distribution

implements Python 2.

4.1.2 GAZEBO simulation tool

Figure 4.1.2: Iris model in Gazabo
simulator

In order to perform high fidelity simulations, this

work uses Gazebo. Gazebo is a 3D dynamic

simulator with the ability to accurately and

efficiently simulate robots in complex indoor and

outdoor environments. This engine provides

physics simulation at a much higher degree of

fidelity, a suite of sensors, and interfaces usually

used to design and test robot behavior. Each

model to be used in the simulation is defined with

Unified Robot Description Format (URDF) that traduce kinematic and dynamic of the

robot in an XML format. For this project, a generic multi­copter descriptor of the Iris

quadcopter is used.

33

CHAPTER 4. EXPERIMENTAL VALIDATION

4.1.3 PX4 Autopilot

In order tomake a quadcopter or any UAV fly, in simulation or real life, it is mandatory

to use flight control software that will interact with available sensors to evaluate

the state, control the motors, integrate user input and other vital functionalities.

Developing such software can be done to obtain basic features but can be too time­

consuming and prone to errors unrelated to this project’s main objectives.

In this work, the open­source flight controller PX4 is used to deploy the developed

control features. PX4 is hugely spread in industry, research and is proven to be efficient

while providing a flexible set of tools. Multiple types of UAVs can be controlled from

it, and, among the ecosystem, some ready­to­use hardware is available, facilitating the

integration and deployment. Moreover, some stable and robust libraries have been

developed to interface this software with ROS.

PX4 for multicopter implement the following control architecture :

Figure 4.1.3: PX4 on­board cascade controller. ∗sp variables are references, and
depending on the flight mode, the command is branched on one of these variables.

This controller is based on a cascade PID scheme, with each subpart has to be

tuned to optimize overall behavior. In figure 4.4.3, one block is responsible for the

transformation between inertial and body frame, and the last one transforms thrust

and body rate as motors input. Depending on the flight mode, the user can branch his

command on ∗sp variables.

• Position mode, keep a target set pointXsp, ψsp

• Off­board mode is used to test the custom MPC controller. MPC return u∗ and

34

CHAPTER 4. EXPERIMENTAL VALIDATION

can be branch onΩsp, δTsp.

However, in chapter 2, the input system of themodel used by theMPC controller is the

vector composed of vertical thrust ans 3 axis torques:

u = [ft τx τy τz]
T = [ft τB]T ∈ R4 (4.1)

As shown in the figure 4.1.3, the torque can not be used as PX4 input. The choice has

been made to use the angular rate as the input. Indeed solving the MPC optimization

problem at t gives optimal input sequence u∗ = {u∗
t ,u

∗
t+1, ...,ut+T−1

∗}T with T the

horizon. From this optimal control sequence result an optimal state sequence x∗ =

[x∗
t ,x

∗
t+1, ...,x

∗
t+T]

T . Extracting the optimal state’s angular rate at t+1 gives a good

approximation of the torque part of the input. The thrust is kept as the one present

in u∗t :

u∗t = [ft, τx|t, τy|t, τz|t] ∈ R4 (4.2)

Gives :

x∗
t+1 = [x∗t+1, y

∗
t+1, z

∗
t+1, ẋ

∗
t+1, ẏ

∗
t+1, ż

∗
t+1, p

∗
|t+1, q

∗
|t+1, r

∗
|t+1, ϕ

∗
t+1, θ

∗
t+1, ψ

∗
t+1]

T ∈ R12 (4.3)

Then :

[δTsp Ωsp]
T = [ft, p∗|t+1, q∗|t+1, r∗|t+1]

T ∈ R4 (4.4)

See 2.22 The necessity to use angular velocity as system input as implication on

the feedback policy presented in the tube approach. Indeed, the linearization and

computation of the stabilizing gain have to be done for the reduced dynamic fr

presented in 2.26 such as :

urt = vrt +KLQR|t(x
r
t − zrt) (4.5)

with:

KLQR|t ∈ R4∗9 xrt , z
r
t ∈ R9 (4.6)

35

CHAPTER 4. EXPERIMENTAL VALIDATION

such as xr|k, zr|k taking the form:

xr
t = [xt+1, yt+1, zt+1, ẋt+1, ẏt+1, żt+1, ϕt+1, θt+1, ψt+1]

T ∈ R9

zr
t = [x∗t+1, y

∗
t+1, z

∗
t+1, ẋ

∗
t+1, ẏ

∗
t+1, ż

∗
t+1, ϕ

∗
t+1, θ

∗
t+1, ψ

∗
t+1]

T ∈ R9

vrk = [ft, ω∗
x|t+1, ω∗

y |t+1, ω∗
z |t+1]

T ∈ R4

urk = [δTsp Ωsp]
T ∈ R4

(4.7)

xr
t being the estimated state of the real system, zr

t the nominal state, vrk the nominal

optimal input and urk the system input to PX4.

Concerning the state estimation, PX4 Estimation and Control Library use an Extended

Kalman Filter, a non­linear extension of Kalman Filter presented by R. Kalman 1960,

Kálmán and Bucy 1961. This tool fuses inputs from different sensors to compute

a precise state estimation from noisy signals. The fusion uses a combination of

IMU, Gyroscope, Magnetometer, Barometer, and external references (vision­based for

example).

Remark 1. PX4 is based on quaternion attitude description. Thus transformation tools

need to be used to obtain Euler angles (ROS provides these features but can easily be

implemented).

4.1.4 Overview

The simulation setup is summarize in the figure 4.1.4:

Gazebo acts as a simulation engine; the drone model lives in the simulated world

and takes motor inputs from PX4 autopilot while returning simulated sensors values.

PX4 usually communicates with a protocol named MAVLink and needs an extra

abstraction level to be integrated into ROS. The plug­in used is named MAVRos,

it publishes/subscribes to all the necessary topics on ROS Master and make the

conversion between ROS messages and MAVLink messages. For testing purpose, the

autopilot is switched to the off­board mode and the extra custom node implementing

MPC publish the target thrust and angular rate for the simulated system.

36

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.1.4: Overview of the simulation setup. Based on ROS communication
features, three elements are display. Gazebo simulation engine, PX4 flight control

software and its MAVRos interface and the custom offboard MPC.

4.2 Solvers

MPC optimization problems require powerful solvers. The solver’s computational

speed is a significant factor for simulation and hardware validation as the target

control frequency is set at 50Hz. Two frameworks have been tested to research

the best performances, the first framework is named CasADI, and the second one is

acados.

4.2.1 CasADI

acados is an open­source software tool for numerical optimization, started as an

academic project by Joel Andersson and Joris Gillis at KU Leuven. Mainly focus on

optimal control, CasADI is now a widely spread tool that defines a whole framework of

variable types, function definitions, and solver implementations. CasADI is available

in C++, Python and MATLAB/Octave. The authors present the different languages

37

CHAPTER 4. EXPERIMENTAL VALIDATION

As presented in the workflow, the first step is based on Python validation, CasADI

Python API is the best documented and more stable one. It runs on Python 2 and

3.

4.2.2 acados

acados is a software package for the efficient solution of optimal control and estimation

problems. Build as the successor of ACADO software developed at KU Leuven it

provides a collection of computationally efficient building blocks tailored to optimal

control and estimation problems. acados is built on top of the acados formalism and

provides cross­compatibility. User interfaces exist for Python and MATLAB/Octave

and can describe optimal control problems to generate self­contained C code that can

be readily deployed on embedded platforms. This last feature is critical in the real­

time application framework as the generated C code should be better optimized for

fast computation.

4.2.3 Comparison

The two frameworks can be compare with two main criterions :

• Computation efficiency.

• Deployment convenience.

Being driven by the 50 Hz control frequency objective, computational efficiency

is crucial in the solver’s choice. As it can be expected, acados present a better

performance of about one order of magnitude. Indeed, this framework generates a

C­optimized SQP­RTI solver from the problem defined in Python by the user. This

solver can then be used as an external library to obtain :

These performances are obtained for the following NMPC problem:

Parameter Value

Q [1, 1, 1, 1, 1, 1, 1, 1, 1 ,1 ,1]

R [1,1,1,1]

P PLQR

Horizon 15

solver type QP solver

38

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.2.1: Performances comparison of acados and acados solver on the same
NMPC problem.

The difference between the two solvers can vary depending on the problems’ nature,

but this gives a good idea about raw performances and why acados have been selected

for the real­time controller.

However, CasADI still presents a significant advantage in deployment convenience as

it can run on Python 2. Indeed, this project simulation and hardware experiments are

based on ROS Melodic running this Python version. For this reason, CasADI will still

be used for tasks with no critical time constraints as trajectory generation. Concerning

the deployment of acados, as it only runs on Python 3, the associate ROS node has been

developed in C++ using a pre­generated c solver.

4.3 Trajectory generation.

Trajectory generation is one of the bases of the experimental setup. The objective

is to provide a finite set of points, a maximum traveling speed, and a discretization

step to obtain a trajectory exploiting the quadrotors’ full dynamic capabilities. In

this project, the problem is separated into two parts. A first polynomial trajectory

is computed based on polynomial segments defined between given waypoints. The

transition between each segments is done ensuring continuity of the position, velocity,

39

CHAPTER 4. EXPERIMENTAL VALIDATION

acceleration, and jerk. The result is a discrete trajectory with a sampling period δ that

will serve as a reference for a long horizon NMPC (where horizon T equal the total

length of the polynomial reference). Indeed, the second step is based on a non­linear

MPC controller using the generated reference to obtain a full final trajectory exploiting

the quadrotor dynamic. The usage of NMPC also allows integrating constraints in

trajectory generation.

The trajectory generation has been developed in an independent custom Python

Figure 4.3.1: 1. Python validation step, 2. High fidelity simulation, 3.Hardware
validation

package that can reuse in other types of work where a trajectory based on the system’s

dynamic is required.

4.3.1 Polynomial trajectory

The method describes here is inspired by the work of traj_poly_2007 and aims to

generate a polynomial trajectory to be followed by a quadrotor. A sequence of Nwp

waypoints in 3D space {xref |k}Nwp

k=0 is used to generate a minimum­snap polynomial

path passing through each of those waypoints. Between each waypoint, the trajectory

segment is composed of independent polynomials, P (t) with t ∈ [0, T] and T the

estimate travel time. A cost function J(T) is define from this polynomial and its Nd

first derivative :

J(T) =

∫ T

0

c0P (t)2 + c1P
′
(t)2 + ...+ cNd

PNd(t)2dt = pTQ(T)p (4.8)

In this expression, p is a vector of the Nd coefficients of a single polynomial. Playing

with the associate value modify the weight of the derivative in the cost function.

The construction of the Hessian matrix Q is omitted for brevity,but follows from

40

CHAPTER 4. EXPERIMENTAL VALIDATION

differentiation of the square of the polynomial with respect to each of its coefficients.

M polynomial segments can be jointly optimized by concatenating their cost matrices

in a block­diagonal fashion to obtain a fully optimized trajectory :

Jtotal =


p1

.

.

pM


T 

Q1(T1)

.

.

QM(TM)




p1

.

.

pM

 (4.9)

From this, constraints needs to be added to assign specific values of velocity,

acceleration, jerk or snap at each waypoints. Exact derivation can be found in

traj_poly_2007. The result is a quadratic optimization of the coefficients of each

polynomial segment. This is solved using CasADI and results in optimized polynomial

trajectory that canbe sampledwith a period δ. This sampled trajectory {rt}Ttotalt=0 passing

by all the defined waypoints {xref |k}Nwp

k=0 in a time Ttotal = T1 + T2 + ...+ TM is used as

reference for the NMPC problem .

4.3.2 NMPC trajectory

Taking the polynomial trajectory {rt}Ttotalt=0 generated above, a NMPC problem is used

ensure its feasibility for the target system i.e. a quadrotor. Moreover, this additional

step allows to exploit the full potential if the system dynamic, and playing with

the weights in the stage cost could be used to navigate between aggressive and soft

behavior. The NMPC horizon is taken as the full reference trajectory length Ttotal.

min
u.∈U

J(x.,u.) (4.10)

with :

J(x.,u.) =

k=Ttotal∑
k=0

F (xk − rk,uk) + E(xTtotal
− rTtotal

) (4.11)

∀k = 0, ..., Ttotal (4.12)

41

CHAPTER 4. EXPERIMENTAL VALIDATION

subject to:

xk+1 = f(xk,uk),

uk ∈ U, ∀k ∈ [0, Ttotal],

xk ∈ X, ∀k ∈ [0, Ttotal],

xTtotal
∈ Xf ,

x0 = r0

(4.13)

With, f target system dynamic and Xf taken as {rTtotal}. This last equality constraint
can be difficult to satisfy in practice. To avoid to run into infeasible, slack variables are

added according to acados documentation. ((acados — acados documentation 2021)

NMPC result in optimal state x∗
t and u∗

t optimal input with t ∈ [0, Ttotal]. x∗
t constitute

an optimal discrete trajectory that can be serve to the online controller of the real

system rewrote as r∗ = {r∗0, r∗1, ..., r∗Ttotal}.

Figure 4.3.2: Example of optimal trajectory for the quadrotor dynamic described in
chapter 2. In yellow the polynomial reference and in blue the NMPC output trajectory

x∗t

42

CHAPTER 4. EXPERIMENTAL VALIDATION

4.4 Deep­learning for tube estimation.

As described in chapter 3, a key point is to estimate the tube using deep­learning

quantile regression. The neural network is developed using Python 3 jupyter notebook

and is based on Pytorch framework. This framework is widely spread for this kind

of development and allows to quickly deploy complex architecture while being able to

control and modify each subpart.

No GPU was available at SML for training. Thus Google Colab solution have been

used.

4.5 Experimental setup

4.5.1 Hardware quadcopter

Figure 4.5.1: Quadrotor
srd370 frame and associated mRo
Pixracer

The experiment support on which the algorithm

has been tested is presented in the figure 4.5.1.

This quadcopter is based on an srd370 frame with

an embedded computer mRo Pixracer. The board

is part of the PX4 ecosystemand implement all the

features described in the last section, interfacing

a set of sensors fused by an extended Kalman

filter, implementing a low­level control loop, and

the communication tools. Built­in wifi allows to

communicate with external devices, and a FrSky

receptor is used to get user input from the radio

command. The main hardware characteristics of

the board are described as :

• STM32F4 MCU 180MHz Cortex M4 with

FPU and 256Kb SRAM

• ICM­20608 Accel

/ Gyro (4 KHz) / MPU9250 Accel / Gyro /

Mag (4 KHz)

• HMC5983 magnetometer with temperature

compensation

43

CHAPTER 4. EXPERIMENTAL VALIDATION

The full setup with battery pack is measure to weight 10.090Kg.

4.5.2 Motion capture

Figure 4.5.2: Oqus 400 camera
for Qualisys motion capture

A motion capture setup is used to get the

quadcopter state with high accuracy. The setup

is based on Qualisys products composed of 12

cameras (10 Oqus 400 and 2 Oqus 310+) made

for cinema motion capture. They provide high

quality tracking at the ground level. However,

when going up, the performances drops limiting

the possible flying window. Due to this limitation

and to the lab disposition the flying window is

about 2m ∗ 2m ∗ 2m.
The position obtains with the setup is fed into PX4

kalman filter through a dedicate ROS topic publish by a compatible node running on

the Qualisys computer.

4.5.3 Overview

The hardware setup is summarize in th below figure:

In this setup, the basis of the simulation tools is kept. ROS is still used for its inter­

machine communications feature that allows running ROS master and the off­board

controller on the main computer while controlling the srd370 drones and gathering

inputs from the qualisys motion capture system (running on another machine). PX4 is

running on the PixRacer on­board computer, and MAVROS plays the role of interface

with ROS master. All these components are linked through the same network.

44

CHAPTER 4. EXPERIMENTAL VALIDATION

Figure 4.5.3: Overview of the simulation setup. Based on ROS communication
features, three elements are display. Qualisys motion capture system, PX4 flight
control software and its MAVRos interface runing on emdedded pixRacer and the

custom offboard MPC.

45

Chapter 5

Result

5.1 Python fundamental validation

First experiments are performed to validate basic features of NMPC implementation

using acados solver, Python, and quadrotors model. Further developments take

roots in these initial experiments, acados problem formulation is tested, and different

NMPC parameters (cost weight, constraints, terminal cost, terminal constraints, and

horizon). System sampling period is taken as δ = 0.02 s and control frequency target

as 50Hz. However, this target frequency is not a key factor as the priority is on NMPC

setup exploration.

5.1.1 Setpoint

Setpoint problem is the first step performed in this work. The NMPC formulation in

its stable version describes in 3.9 is use with:

F (xk|t − r,uk|t) = (xk|t − r)TQ(xk|t − r) + uk|t
TRuk|t,

E(xT |t − r,uk|t) = (xk|t − r)TP (xk|t − r)
(5.1)

P ∈ R12×12 is the LQR terminal cost derived from the Algebraic Riccati Equation,

Q ∈ R12×12 and R ∈ R4×4 chosen for satisfying performances and r ∈ R12 the target

point. Details can be found in :

46

CHAPTER 5. RESULT

Parameter Value

Q diag([5, 5, 1.5, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.2, 0.2, 0.2])

P diag([0.5, 1, 1, 1])

xmax [1, 1, 1.5, 1, 1, 1, 1, 1, 1, 0.4363, 0.4363, 3.1415]

xmin [­1, ­1, ­1.5, ­1, ­1, ­1, ­1, ­1, ­1, ­0.4363, ­0.4363, ­3.1415]

umax [30, 1.5, 1.5, 1.5]

umin [0, ­1.5, ­1.5, ­1.5]

xterm [0.2, 0.2, 0.4, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1745, 0.1745, 0.1745]

T 15

The choice of xterm such as:

Xf = {x ∈ Rnx | −xterm ≤ xk|t − r ≤ xterm, ∀k ∈ [0, T] ∀k ∈ N+} (5.2)

is quite large but allows a large enough set to ensure that the problem remains feasible

for a small horizon. The reference remains closer from the system for the trajectory

following, allowing to tighten this terminal set.

Figure 5.1.6 shows the full state of the quadrotor

going from x0 = [0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0] to r = [0.4, 0.4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] and

5.3.6 the error evolution of the position. In figure 5.1.6, utilization of slack variables is

highlighted.

Figure 5.1.1: Position error plot for setpoint control problem solved with NMPC

47

CHAPTER 5. RESULT

Figure 5.1.2: Evolution of simulated quadrotor states. Up­right corner a zoom showing
the effect of slack variables.

48

CHAPTER 5. RESULT

5.1.2 Trajectory

Figure 5.1.3: simple trajectory following
problem using NMPC on quarotors model.

Trajectory following is the core problem

for this work. Based on the generated

trajectory r∗ = {r∗0, r∗1, ..., r∗Ttotal} sampled

with a period δ the cost functions are

rewrote as:

F (xk|t − r∗
k+t,uk|t) =

(xk|t − r∗
k+t)

TQ(xk|t − r∗
k+t)

+uk|t
TRuk|t,

E(xT |t − r∗
T+t,uk|t) =

(xk|t − r∗
T+t)

TP (xk|t − r∗
T+t)

(5.3)

P ∈ R12×4 is the LQR terminal cost

compute from Riccati equation, Q ∈
R12×12 andR ∈ R4×4 chosen for satisfying

performances and rk+t ∈ R12 the time

varying target point. Details can be found

in :

Parameter Value

Q diag([5, 5, 1.5, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.2, 0.2, 0.2])

P diag([0.5, 1, 1, 1])

xmax [1, 1, 1.5, 1, 1, 1, 1, 1, 1, 0.4363, 0.4363, 3.1415]

xmin [­1, ­0.5, 0.0, ­1, ­1, ­1, ­1, ­1, ­1, ­0.4363, ­0.4363, ­3.1415]

umax [30, 1.5, 1.5, 1.5]

umin [0, ­1.5, ­1.5, ­1.5]

xterm [0.05, 0.05, 0.05, 0.01, 0.01, 0.01, 0.2, 0.2, 0.2, 0.1745, 0.1745, 0.1745]

T 15

49

CHAPTER 5. RESULT

Figure 5.1.4: Error evolution on the full quadrotor state. The system is shown following
a trajectory using simple NMPC formulation.

50

CHAPTER 5. RESULT

5.1.3 Inherent stability

Figure 5.1.5: Additive noise on simple
trajectory following problem using NMPC

on quarotors model.

Inherent

stability is interesting to observe. Indeed,

even under external noise, the stable

version of NMPC can still produce good

performances. In order to simulate it, we

change the dynamic such as :

xt+1 = f(xt,ut) +wt (5.4)

and let wt follow a state dimension

dependant uniform probability centered

on 0:

W ∼ U(0, wj) j ∈ [0, 12] (5.5)

with wj noise range associated with the

jth state dimension and :

w = [0.005, 0.005, 0.005, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.005, 0.005, 0.005] (5.6)

The noise can seem small but considering that sampling time of δ = 0.02, it remains a

good way to evaluate the robustness of NMPC.

Terminalweight gain is kept as the solution of the riccati equation for the LQRproblem.

For the rest, the same formulation as for simple trajectory following problem is used,

and details can be found in :

51

CHAPTER 5. RESULT

Parameter Value

Q diag([5, 5, 1.5, 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.2, 0.2, 0.2])

P diag([0.5, 1, 1, 1])

xmax [1, 1, 1.5, 1, 1, 1, 1, 1, 1, 0.4363, 0.4363, 3.1415]

xmin [­1, ­0.5, 0.0, ­1, ­1, ­1, ­1, ­1, ­1, ­0.4363, ­0.4363, ­3.1415]

umax [30, 1.5, 1.5, 1.5]

umin [0, ­1.5, ­1.5, ­1.5]

xterm [0.05, 0.05, 0.05, 0.01, 0.01, 0.01, 0.2, 0.2, 0.2, 0.1745, 0.1745, 0.1745]

T 15

52

CHAPTER 5. RESULT

Figure 5.1.6: Error evolution on the full quadrotor state. The system under the action
of additional noise is shown following a trajectory using simple NMPC formulation.

53

CHAPTER 5. RESULT

5.2 Experimental validation

After the first python tests, the objective was to validate the experimental setup by

implementing the same NMPC formulation on simulated quadrotors and real­life

systems. This step is crucial and challenging. Indeed, as described in chapter 2,

quadrotors present fast dynamic, which implies high control frequency but also large

state dimension, which leads to increasing solving time for MPC.

This section demonstrates that these challenges have been overcome with success. All

the setups have been described in the last chapter, and the objective here is to show the

results. All the tests are performed using the described trajectory generation, which

produces a step­like function. The shape has been chosen on purpose and according

to the limited flying area available. It allows observing the quadrotor reaction in a

situation of sharp variation.

5.2.1 Gazebo simulation

The first natural step is to transfer the basic python tests to high­fidelity simulations.

The results can be seen in figure 5.2.1, and it is immediately possible to observe the

large error in the transition phase as the NMPC struggles to follow the sharp reference

trajectory. Fine­tuning could increase the position error cost, but it could also lead to

instability or increasing computation time.

(a) Isometric (b) Side (c) Top

Figure 5.2.1: Different views of 50 Gazebo simulated quadrotor travel along reference
trajectory. Control based on NMPC

54

CHAPTER 5. RESULT

Figure 5.2.2: Summary of 50 Gazebo simulated quadrotor travel along reference
trajectory. Control based on NMPC. The upper part show the state evolution and the
lower part the average error between the system and the reference.

55

CHAPTER 5. RESULT

5.2.2 Hardware

After a successful implementation inROS simulation, the setup has been transferred to

a real­life system. Even if a standard deviation ismuchmore present and the transition

phase is worse than in simulation, these results are expected. Indeed, the hardware

implementation brings an additional complexity challenging to reproduce even with a

high fidelity simulation engine. However, both experiments go in the same way and

show that the developed experimental setup can provide results.

(a) Isometric (b) Side (c) Top

Figure 5.2.3: Different views of 50 quadrotor travel along reference trajectory. Control
based on NMPC.

Both these experiments shows the inherent robustness of NMPC technique.

56

CHAPTER 5. RESULT

Figure 5.2.4: Summary of 50 quadrotor travel along reference trajectory. Control
based onNMPC. The upper part show the state evolution and the lower part the average
error between the system and the reference.

57

CHAPTER 5. RESULT

5.3 Tube estimation

The developed approach in this work is based on the tube estimation for a given

controlled system under a chosen feedback policy. To perform such estimation, deep

learning has been chosen for its faculty not to assume noise distribution and for the

possibility to compute quantile within which the system is guaranteed to stay with a

probability α.

As for any deep learning problem, data are needed. The experimental setup has been

used in simulation and hardware to generate multiple traveling around the reference

trajectory, creating a representative dataset of the tube to be learned.

It is important to remember that the tube is extremely dependent on the feedback

policy. Thus, the dataset is generated using a middle ground controller (see D. Q.

Mayne, E. C. Kerrigan, et al. 2011). This controller has the same formulation as the

final tube MPC; an NMPC controller is implemented on the nominal system giving an

optimal input that is modified using the feedback policy based on time­varyingKLQR|t

and the difference between the nominal system and the real one. However, the adapted

constraints on the nominal system are omitted as the tube is not estimated yet(see

chapter 3). Thus, it can not be considered as robust.

58

CHAPTER 5. RESULT

5.3.1 Data­set

In order to test our approach in challenging conditions, a new trajectory is generated.

This trajectory stays in a 2D plan but flies close to the upper bound of the y constraint.

To put some context, it is possible to imaging a real trajectory for a delivery drone flying

close to a building in urban environment.

As a first step, this generation is implemented in a Python framework to keep it simple

and validate the approach.

5.3.1 and 5.3.2 show this trajectory and the 50 travel of a simulated quadrotor around

it. It is now easy to visualize the tube generated by the noise’s different realization and

how, without tighten constraint, the quadrotor violates the y bound.

Note: The simulated system takes the form:

xt+1 = f(xt,ut) +wt (5.7)

and the additive noise wt following a state dimension dependant uniform law centered

on 0:

W ∼ U(0, wj) j ∈ [0, 12] (5.8)

with wj noise range associated with the jeme state dimension and :

w = [0.005, 0.005, 0.005, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.005, 0.005, 0.005] (5.9)

(a) Isometric (b) Side (c) Top

Figure 5.3.1: Different views of 50 Python simulated quadrotor travel along reference
trajectory. Control based on intermediate controller. On these plot the trajectory is
made such as the real system violate the constraints. Our tube­MPC should correct it.

59

CHAPTER 5. RESULT

Figure 5.3.2: Summary of 50 Python simulated quadrotor travel along reference
trajectory. Control based on NMPC. The upper part show the state evolution and the
lower part the average error between the system and the reference. Taking a closer
look to the y allows to observe constraints violation.

60

CHAPTER 5. RESULT

5.3.2 Training

Param Value Param Value

Hidden Layers 2 Layers width 64

Epochs 5000 Batch Size 30

Activation function RelU Dropout 0.2

Optimizer Adam Batch norm True

According to the last section, data set for

tube estimation can be generated. The

objective is to use these data to perform

a quantile regression as in Fan, Agha­

mohammadi, and Theodorou 2020 and

obtain an inner approximation of the

robust tube for tube MPC. However, as

mentioned before, the estimation is done

off­line, which constitutes a significant differencewith the reference paper. In thework

presented by Fan, Agha­mohammadi, and Theodorou 2020 they formulated the deep

learning estimation directly into the MPC formulation introducing complexity for the

solver, which is very difficult to run in real­time systems with fast dynamics, such as

the quadrotor. In this work, the choice has been made to keep a simple architecture

mainly due to time constraints, as it can be seen in figure 5.3.7.

The described neural network takes a randomized data point ωt as input and, using the

two hidden layers, will learn fω to output ωt+1. Three outputs with different α values

can be observed and correspond to the different quantile to estimate. In order to build

the tube, only α = 0.02 and α = 0.98 are taken into account.

The training results 5.3.4 show performances under the desired values. Many

variations of the architecture have been tried to archive better performances without

success. Further work implementing cutting­edge architecture could be interesting.

However, the obtained results can be considered as sufficient to validate our approach.

Note that validation steps are not applied as no further prevision will be made by the

learn model. The objective is to learn the tube and to use it as parameter of the MPC

module.

61

CHAPTER 5. RESULT

Figure 5.3.3: Deep learning regression architecture

Figure 5.3.4: Estimated tube after training procedure.

62

CHAPTER 5. RESULT

5.3.3 Results

Once the tube is estimated, the nominal constraints are tightened according to 3.42,

and the simulation is used to verify the quadcopter’s robust behavior. This section

shows the results of our approach in three different situations.

The first one is described in the tube estimation section. The trajectory pushes the

quadrotor close to the upper bound of y, simulating a wall presence. In the last section,

tube estimation have been discussed; this section is showing the result of the tube

integration in our robust MPC.

The second and third situations are more general but aim to prove that they can be

implemented on real systems. Indeed, the assumed objective was to demonstrate that

this approach can bring robust MPC to a real fast and complex system. Thus, the two

last part shows our approach work on high fidelity simulator and real quadrotor.

The last step would be to put the real system in a position of constraints violation, but

due to the heavy time constraints on this project, it will remain as future work.

Constraints activation

In this experiment, it is possible to observe the effect of tightening constraints on

the controlled system. After tube estimation, the noise is taken into account, and

the nominal component of our robust MPC adds an additional margin to avoid the

real system colliding with the wall. At the same time, the feedback policy based on

stabilizing KLQR keeps the system in the tube with a probability α = 0.98. These two

components united, this control approach can be considered robust. The noise has

been modified to highlight this robust behavior when the system comes closer to the

wall. The uniform distribution remains in the range of the initial one, keeping the

validity of our estimation, but only the positive part is kept. This simulates an extreme

situation where the robustness will need to guaranty the system’s safety.

63

CHAPTER 5. RESULT

Figure 5.3.5: Comparison of tube MPC with estimated tube of the left (1) and NMPC
on the right (2) under the same conditions. The tube MPC shows robust behavior.

Figure 5.3.6: Noise applied on both systems. Note that the noise is amplified before
coming closer to the wall to show the effect of our approach.

64

CHAPTER 5. RESULT

Figure 5.3.7: State evolution of both NMPC and tube MPC with estimated tube under
the same noise conditions.

65

CHAPTER 5. RESULT

Simulation and hardware

Based on the discussed tube generation, the exact same procedure is applied for the

step­like trajectory. A tube has been generated and is integrated into the controller.

This experience’s objective is not to show robust propriety as the quadcopter travel

far from constraints boundaries. The idea here is to show that our approach can

be implemented on a real system while keeping a high control rate and satisfying

performances. For Gazebo simulation, the performances have been improved as the

position error is now lower than for NMPC trajectory tracking. For the hardware

experiment, the system mainly suffers from the sub­optimal initial condition and

seems to struggle to avoid errors in the y axis. H

(a) Isometric (b) Side (c) Top

Figure 5.3.8: Different views of 50 Gazebo simulated quadrotor travel along reference
trajectory. Control based on Tube MPC with estimated tube.

(a) Isometric (b) Side (c) Top

Figure 5.3.9: Different views of 50 quadrotor travel along reference trajectory. Control
based on Tube MPC with estimated tube.

66

CHAPTER 5. RESULT

Figure 5.3.10: Summary of 50 Gazebo simulated quadrotor travel along reference
trajectory. Control based on Tube MPC with estimated tube. The upper part show
the state evolution and the lower part the average error between the system and the
reference.

67

CHAPTER 5. RESULT

Figure 5.3.11: Summary of 50 quadrotor travel along reference trajectory. CControl
based on Tube MPC with estimated tube. The upper part show the state evolution and
the lower part the average error between the system and the reference.

68

Chapter 6

Conclusions

The work presented in this thesis contribute to bringing robust tube MPC on real­life

application by combining Tube MPC technique deep learning quantile regression for

RPI estimation for systems with fast and complex dynamic­ a quadrotor in this case.

It is shown that the controlled system uses the learned tube to avoid constraint

violation in a robustmanner, using offline generated tube and online updated feedback

policy.

It is essential to highlight that a lot of work has been done to provide experimental

support for validation and future experiments. Keeping in mind flexibility

and modularity, this work’s results are also a development platform for future

improvement. This developed platform proved its efficiency as several experiments

have been performed with success from simulation to real drones while keeping

consistency on the results.

6.0.1 Future Work

Even if the work provides promising results, it only constitutes the first steps of tube

estimation for robustMPC control on a real complex system. As the project’s objectives

were centered on experimental setup and validation, some additional theoretical

developments need to be done to reinforce the bases of the controller derivation.

A central point would be stability proof for such MPC formulation in indiscreet

time, which is not trivial but central to safety­critical application. In addition, some

performance validations have to be done as, due to time constraints, robust behavior

has not been shown on high fidelity simulation or hardware support. However,

69

CHAPTER 6. CONCLUSIONS

promising results on Python simulation and first implementation on the real system

shows that these test could provide the same kind of outcome.

The tube estimation gave satisfying results. However, there is a big room for

improvement and many things to try. From live estimation with GPU hardware to

multi­step forecasting using recurrent neural networks, this field is growing extremely

fast, and this work demonstrated an interest in exploring such techniques.

Concerning the experimental setup, fine­tuning and code optimization could provide

better performances essentially on a no­linear solver. Going this way would allow to

allocate time to other tasks such as tube forecasting or any further development while

keeping a high control frequency.

70

Bibliography

acados — acados documentation (2021). URL: https://docs.acados.org/ (visited

on 02/24/2021).

Allan, Douglas A., Bates, Cuyler N., Risbeck, Michael J., and Rawlings, James B.

(2017). “On the inherent robustness of optimal and suboptimal nonlinear MPC”.

In: Systems & Control Letters 106, pp. 68–78. ISSN: 0167­6911.

Berkenkamp, Felix, Turchetta, Matteo, Schoellig, Angela P., and Krause, Andreas

(2017). Safe Model­based Reinforcement Learning with Stability Guarantees.

arXiv: 1705.08551 [stat.ML].

Bresciani, Tommaso (2008). “Modelling, Identification and Control of a Quadrotor

Helicopter”. In: pp. 119–125.

Chen, H. and Allgöwer, F. (1998a). “A Quasi­Infinite Horizon Nonlinear Model

Predictive Control Scheme with Guaranteed Stability��This paper was not

presented at any IFAC meeting. This paper was accepted for publication in revised

form by Associate Editor W. Bequette under the direction of Editor Prof. S.

Skogestad.” In: Automatica 34.10, pp. 1205–1217.

— (1998b). “NonlinearModel Predictive Control Schemes with Guaranteed Stability”.

In: Nonlinear Model Based Process Control. Ed. by Ridvan Berber and Costas

Kravaris. Dordrecht: Springer Netherlands, pp. 465–494.

Chen, Wen­Hua, O’Reilly, John, and Ballance, Donald J. (2003). “On the terminal

region of model predictive control for non­linear systems with input/state

constraints”. In: International Journal of Adaptive Control and Signal Processing

17.3, pp. 195–207.

Chisci, L., Rossiter, J. A., and Zappa, G. (2001). “Systems with persistent disturbances:

predictive control with restricted constraints”. In:Automatica 37.7, pp. 1019–1028.

Fan, David D., Agha­mohammadi, Ali­akbar, and Theodorou, Evangelos A. (2020).

Deep Learning Tubes for Tube MPC.

71

https://docs.acados.org/
https://arxiv.org/abs/1705.08551

BIBLIOGRAPHY

Fan, David D., Nguyen, Jennifer, Thakker, Rohan, Alatur, Nikhilesh, Agha­

mohammadi, Ali­akbar, and Theodorou, Evangelos A. (2020).Bayesian Learning­

Based Adaptive Control for Safety Critical Systems. arXiv: 1910.02325 [eess.SY].

Faulwasser, Timm (Oct. 2012). “Optimization­based Solutions to Constrained

Trajectory­tracking and Path­following Problems”. PhD thesis. Otto von Guericke

University Magdeburg, pp. 10–19.

Findeisen, Rolf (2004). “Nonlinear Model Predictive Control: A Samples­Data

Feedback Perspective”. PhD thesis.

Findeisen, Rolf, Imsland, Lars, Allgower, Frank, and Foss, Bjarne A. (2003). “State and

Output FeedbackNonlinearModel Predictive Control: AnOverview”. In:European

Journal of Control 9.2, pp. 190–206.

Gao, Yiqi, Gray, Andrew, Tseng, H. Eric, and Borrelli, Francesco (2014). “A tube­based

robust nonlinear predictive control approach to semiautonomous ground vehicles”.

In: Vehicle System Dynamics 52.6, pp. 802–823.

Henderson, D. (1977). “Shuttle Program. Euler angles, quaternions, and

transformation matrices working relationships”. In:

James B. Rawlings David Q. Mayne, Moritz M. Diehl (2017a). Model Predictive

Control: Theory, Computation, andDesign, 2ndEdition. NobHill Publishing, LLC,

pp. 252–262.

— (2017b). Model Predictive Control: Theory, Computation, and Design, 2nd

Edition. Nob Hill Publishing, LLC, pp. 200–202.

— (2017c). Model Predictive Control: Theory, Computation, and Design, 2nd

Edition. Nob Hill Publishing, LLC, pp. 11–26.

Kalman, R. (1960). “A new approach to linear filtering and prediction problems”

transaction of the asme journal of basic”. In:

Kalman, Rudolf (2001). “Contribution to the Theory of Optimal Control”. In: Bol. Soc.

Mat. Mexicana 5.

Kálmán, R. and Bucy, R. (1961). “New Results in Linear Filtering and Prediction

Theory”. In: Journal of Basic Engineering 83, pp. 95–108.

Koenker, Roger and Bassett, Gilbert (1978). “Regression Quantiles”. In: Econometrica

46.1, pp. 33–50.

Lazar, Mircea and Spinu, Veaceslav (2015). “Finite­step Terminal Ingredients for

Stabilizing Model Predictive Control”. In: IFAC­PapersOnLine 48.23, pp. 9–15.

72

https://arxiv.org/abs/1910.02325

BIBLIOGRAPHY

Lee, E. B. andMarkus, L. (1967). Foundations of optimal control theory [by] E. B. Lee

[and] L. Markus. Wiley New York, x, 576 p.

Lee, Jay H. (June 4, 2011). “Model predictive control: Review of the three decades of

development”. In: International Journal of Control, Automation and Systems 9.3,

p. 415.

Mayne, D. Q., Kerrigan, E. C., Wyk, E. J. van, and Falugi, P. (2011). “Tube­based

robust nonlinear model predictive control”. In: International Journal of Robust

and Nonlinear Control 21.11, pp. 1341–1353.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000). “Constrained

model predictive control: Stability and optimality”. In: Automatica 36, pp. 789–

814.

Mayne, D. Q., Seron, M. M., and Raković, S. V. (2005). “Robust model predictive

control of constrained linear systems with bounded disturbances”. In: Automatica

41.2, pp. 219–224.

Mayne, D.Q. and Langson, Wilbur (2001). “Robustifying Model Predictive Control of

Constrained Linear Systems”. In: Electronics Letters 37, pp. 1422–1423.

Mayne, David Q. and Kerrigan, Eric C. (2007). “TUBE­BASEDROBUSTNONLINEAR

MODELPREDICTIVECONTROL1”. In: IFAC Proceedings Volumes 40.12, pp. 36–

41.

Nguyen, Thinh, Prodan, Ionela, Stoican, Florin, and Lefèvre, Laurent (July 2017).

“Reliable nonlinear control for quadcopter trajectory tracking through differential

flatness”. In: IFAC­PapersOnLine 50.

Qin, S.Joe and Badgwell, Thomas A. (2003). “A survey of industrial model predictive

control technology”. In: Control Engineering Practice 11.7, pp. 733–764.

Raemaekers, A.J.M. (Dec. 2007). “Design of a model predictive controller to control

UAVs”. PhD thesis. Royal Melbourne Institute of Technology.

Rakovic, S. V., Kerrigan, E. C., Kouramas, K. I., and Mayne, D. Q. (2005).

“Invariant approximations of theminimal robust positively Invariant set”. In: IEEE

Transactions on Automatic Control 50.3, pp. 406–410. DOI: 10.1109/TAC.2005.

843854.

Richards, Arthur andHow, Jonathan (2005). “DecentralizedModel Predictive Control

of Cooperating UAVs”. In: 4, 4286–4291 Vol.4.

73

https://doi.org/10.1109/TAC.2005.843854
https://doi.org/10.1109/TAC.2005.843854

BIBLIOGRAPHY

Rodrigues, F. and Pereira, F. C. (2020). “Beyond Expectation: Deep Joint Mean and

Quantile Regression for Spatiotemporal Problems”. In: IEEE Transactions on

Neural Networks and Learning Systems 31.12, pp. 5377–5389.

Scokaert, Pierre O. M. and Rawlings, James B. (1996). “Infinite Horizon Linear

Quadratic Control with Constraints”. In: IFAC Proceedings Volumes 29.1,

pp. 5905–5910.

Singh, L. and Fuller, J. (2001). “Trajectory generation for aUAV in urban terrain, using

nonlinear MPC”. In: 3, 2301–2308 vol.3.

Taylor, James W. (1999). “A Quantile Regression Approach to Estimating the

Distribution ofMultiperiodReturns”. In:The Journal of Derivatives 7.1. Publisher:

Institutional Investor Journals Umbrella, pp. 64–78.

Valluri, S. and Kapila, V. (1998). “Stability analysis for linear/nonlinear model

predictive control of constrained processes”. In: 3.

Yu, Shuyou, Maier, Christoph, Chen, Hong, and Allgöwer, Frank (2013). “Tube

MPC scheme based on robust control invariant set with application to Lipschitz

nonlinear systems”. In: Systems & Control Letters 62.2, pp. 194–200.

Yu, Shuyou, Reble, Marcus, Chen, Hong, and Allgöwer, Frank (2011). “Inherent

Robustness Properties of Quasi­infinite Horizon MPC”. In: IFAC Proceedings

Volumes 44.1, pp. 179–184.

74

BIBLIOGRAPHY

Figure 6.0.1: Maxime Boutot

75

	Introduction
	Background and Motivation
	Contribution
	Outline

	System description
	Preliminaries
	Euler angles
	Quadrotor mathematical model
	Kinematic
	Dynamic
	State-space model
	Reduced model
	Linearization

	Controller design
	Nonlinear Model Predictive Control
	Formulation
	Stability
	Inherent robustness

	Tube based Model Predictive Control
	Description
	Nominal trajectory
	Stabilazing gain for Tube MPC
	DeepLearning tube estimation

	Experimental Validation
	Simulation setup
	Introduction to ROS
	GAZEBO simulation tool
	PX4 Autopilot
	Overview

	Solvers
	CasADI
	acados
	Comparison

	Trajectory generation.
	Polynomial trajectory
	NMPC trajectory

	Deep-learning for tube estimation.
	Experimental setup
	Hardware quadcopter
	Motion capture
	Overview

	Result
	Python fundamental validation
	Setpoint
	Trajectory
	Inherent stability

	Experimental validation
	Gazebo simulation
	Hardware

	Tube estimation
	Data-set
	Training
	Results

	Conclusions
	Future Work

	References

