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Abstract | i

Abstract
In the past few years, the application of Control Barrier Functions (CBF) and
High Order Control Barrier Functions (HOCBF) as a suitable framework to
ensure safety for autonomous systems has attracted increasing interest. In
particular, autonomous space systems are frequently subject to safety-critical
constraints due to the high costs involved in manufacturing and launching. In
the present work, the application of a sample data MPC controller subject to
CBF and HOCBF constraints is explored as a suitable solution for spacecraft
formation flight operations. Specifically, a prototype inspection mission of
the International Space Station through a multi-agent formation of CubeSats
is explored. Each CubeSat is assumed to be injected in a passive relative orbit
around the ISS and controlled such that the state of each agent is maintained
within a prescribed safe corridor from its reference relative orbit. Moreover,
appropriate conditions on the minimum control authority required to guarantee
the constraints satisfaction within the MPC scheme formulation are derived
and a numerical procedure to assess the recursive feasibility of the designed
controller is presented. Moreover, suitable analytical modifications of the
classical CBF and HOCBF constraints definitions are introduced such that the
presented sample data MPC control scheme is guaranteed to ensure safety for
the state of each agent in between sampling intervals. Lastly, the final control
strategy is validated numerically by means of computer simulation.

Keywords
Space Robotics, Control Barrier Functions, Autonomous systems, Multi-agent
systems



ii | Sammanfattning

Sammanfattning
Under de senaste åren har tillämpningen av Kontrollbarriärfunktioner
(CBF) och Högre ordningens kontrollbarriärfunktioner (HOCBF) som ett
lämpligt ramverk för att säkerställa säkerhet för autonoma system väckt
ett ökande intresse. Autonoma rymdsystem är ett område med särskilt
fokus på säkerhetsbegränsningar på grund av de höga tillverknings och
uppskjutningskostnaderna. I detta arbete undersöks tillämpningen av en
MPC-kontroller med CBF och HOCBF bivillkor för applikation inom
formationsflygningsoperationer för rymdfarkoster. Detta görs genom att ett
prototypinspektionsuppdrag på Internationella Rymdstationen (ISS) genom
en multi-agent formation av CubeSats tas fram. Varje CubeSat är ämnad att
injiceras i en passiv relativ omloppsbana runt ISS och styras sådant att varje
agents tillstånd bevaras inom en föreskriven säker korridor från dess passiva
relativa referensomloppsbana. Lämpliga villkor för den minsta styrbarheten
som krävs för att garantera att MPC-schemaformuleringens begränsningar
är tillfredsställda härleds, och en numerisk procedur för att bedöma den
rekursiva genomförbarheten för den designade kontrollern presenteras.
Vidare introduceras lämpliga analytiska modifieringar av de klassiska
CBF- och HOCBF-begränsningsdefinitionerna så att det presenterade MPC-
kontrollschemat med provdata garanterar säkerheten för varje agents tillstånd
mellan dess samplingsintervall. Till sist valideras den slutliga kontrollstrategin
numeriskt via datorsimuleringar.

Nyckelord
Space Robotics, Control Barrier Functions, Autonomous systems, Multi-agent
systems
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δẋ relative state

δx̃ perturbed relative state, see equation (2.3.3), . . . . . . . . . . . . . . . page 20

δv relative velocity of the deputy w.r.t the chief in the Hill’s observer
frame, see equation (2.2.4), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 14

ϵδr Maximum position error inside the safe set, see equation (4.3.1),
page 40

ϵδv Maximum velocity error norm inside the safe set, see equation (4.3.19),
page 45

ϵf Maximum dynamic acceleration inside the safe set, see equa-
tion (4.3.19), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 45

D Domain of the CBF

Lf Lie derivative along the vector field f , see equation (3.1.3), . page 25

Lg Lie derivative along the vector field g, see equation (3.1.3), . .page 25

Tk Compact time interval, see equation (2.3.1), . . . . . . . . . . . . . . . page 20

µ Gravitational parameter, see equation (2.1.1), . . . . . . . . . . . . . . . page 4

ν True Anomaly, see equation (2.1.9), . . . . . . . . . . . . . . . . . . . . . . . . page 6

Ω longitude of the ascending node , see equation (2.1.9), . . . . . . . page 6

ω Argument of pericentrum, see equation (2.1.9), . . . . . . . . . . . . . . page 6

ωH/I Angular velocity of the Hill’s frame w.r.t an Inertial frame I, see
equation (2.1.12), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 6

∂CS Border of the safe set , see equation (3.1.2), . . . . . . . . . . . . . . . . page 25



List of Symbols Used | xiii

ψ : D × U × I → R Control Barrier function constraint, see equation (3.1.4),
page 26

r̂ Radial Direction in the Hill’s frame, see equation (2.1.10), . . . page 6

ρ density, see equation (2.1.18), . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 10

ρ0 Base density, see equation (2.1.19), . . . . . . . . . . . . . . . . . . . . . . . page 10

ρr Radial PRO parameter, see equation (2.2.13), . . . . . . . . . . . . . . page 18

ρs Along track PRO parameter, see equation (2.2.13), . . . . . . . . . page 18

ρw Out-Of-Plane PRO parameter, see equation (2.2.13), . . . . . . . . page 18

ŝ Along-track direction in the Hill’s frame, see equation (2.1.10), page 6

b̃ perturbed implicit keplerian state of the chief, see equation (2.3.3),
page 20
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Chapter 1

Introduction

The application of multi-agent system (Multi-Agent System (MAS)) design
to solve complex robotics tasks has received increasing attention in the
past few decades [1]. Examples of successful MAS control paradigms for
terrestrial and aerial applications are extensive in the literature. Especially the
interaction between modern control technique like Reinforcement Learning
and distributed autonomous systems design, is raising growing interest due to
the broad range of military and civil applications. The advantages of MAS
design include redundancy and robustness to single agent failure, reduced
complexity in single agent hardware and the possibility to accomplish complex
interaction among heterogeneous agents. These same advantages are of
critical importance for the next generation of planetary exploration, on-orbit
servicing, and on-orbit construction mission concepts, to mention a few. The
Starlink and OneWeb mega-constellations are remarkable examples of MAS
space-based telecommunication infrastructure, and a few other missions like
GRACE and PRISMA proved to be successful MAS space missions with
high scientific return. The development of robust MAS control paradigms
is particularly appealing for space applications as the distribution of scientific
payload over multiple simple and cost effective spacecrafts (alike CubeSats)
has the potential to significantly impact the production costs and deployment
time [2]. On the other hand, the high computational costs connected to MAS
control approaches and the stringent requirements on control and navigation
accuracy has considerably hampered the concrete application of MAS mission
designs for space applications [2]. In the current work, a prototype MAS
mission design is proposed for the inspection of the outer structure of the
International Space Station (ISS). Since 1998 the ISS has served as on orbit
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Figure 1.1: Graphical overview of the blind spots for the ISS (from [3]). Dark
red areas are areas that cannot be inspected from the interior of the ISS.

science laboratory for micro-gravity experiments. It is known [3] that the
outer structure of the space station presents many blind-spots which are
not possible to inspect if not by an Extra Vehicular Activity (EVA) or by
occasional inspection by cargo missions approaching or leaving the station
[3]. Although EVA missions represent an outstanding experience for the
astronauts inhabiting the station, they still pose their life in danger while
requiring considerable resources in terms of time and energy. This fact
motivates the development of an autonomous robotic inspection of the ISS
which could significantly reduce the cost of inspecting the critical components
of the outer structure of the station while eliminating all the human related
risks involved in EVAs. The prototype inspection mission is developed based
on the work by [4] : it is assumed that a formation of CubeSats, called the
inspectors, is injected into a set of tight Passive Relative Orbit (PRO) around
the ISS with the objective of inspecting the outer structure of the station. Each
CubeSat is assumed to be controlled through an independent sample data MPC
controller which is applied to track the assigned PRO while ensuring control
and safety constraints. The application of Control Barrier Function (CBF)
has gained particular popularity in the past few years as formal framework
to design control invariant sets for dynamical systems where the system state
is considered to be safe which respect to a given notion of safety introduced
during the control design process. Namely, the analytical similarity between
the well known Control Lyapunov Function (CLF) applied to synthesise
stabilising controllers and the CBF formalism applied to synthesise safe
controllers, is the driving reason for its vast theoretical appeal [5]. The
application of sample data CBF inside a Finite Horizon Optimal Control
scheme (FHOC) alike Model Predictive Control (MPC) has been already
explored in [6], but safety in between discrete time steps is not analysed. This
problem is addressed in [7] instead, where a corrective term is added to the
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continuous time CBF constraint formulation in order ensure safety in between
time steps. However, only first relative degree systems are anlysed in [7]. In
the current work, the sample data MPC scheme developed by [7] is expanded
to address higher relative degree systems. Namely, one High Order Control
Barrier Function (HOCBF) and one CBF constraint are included in the MPC
control scheme developed by [7] in order to limit the maximum position and
velocity tracking errors respectively. The recursive feasibility of the derived
MPC control scheme is only proved numerically following an approach similar
to the one proposed by [8]. Namely, the set of allowed positions and
velocities for each inspector state is densely discretised and each discrete
state is test against unfeasibility of the control constraints imposed inside the
MPC scheme. The thesis is divided as follows: In Chapter 2 the nonlinear
spacecraft relative dynamics is revisited based on the work developed by
[9],[10],[11] together with the basic principles of Model Predictive Control
and Control Barrier Functions. In Chapter 3 the control strategy developed
for the inspection mission is developed and numerically validated in Chapter
4 by means of computer simulation. Eventually in Chapter 5 the results of
the specified control scheme are discussed and future research directions are
proposed.
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Chapter 2

Background

2.1 Fundamentals of Astrodynamics
In this section the fundamental dynamics governing the motion of a point mass
as it moves in the gravity field of the Earth is revised. Throughout the section,
vectors quantities are represented in bold and scalars are represented in italics.
The notation ∥∥ denotes the standard Euclidean 2-norm while the hat symbol
on top a vector quantity (̂·) denotes a direction vector (vectors with unitary
norm). When clear from the contest, the norm of a vector is also conveniently
denoted by dropping the bold notation used for vectorial quantities so that r is
the vector norm of r. The symbols a, v and r are used to denote acceleration,
velocity and position respectively. The notation ṙ is used to denote total time
derivatives while partial time derivative of the same vector is denoted by ∂r

∂t
.

A general inertial frame fixed at the Earth center of mass will be denoted as
I.

2.1.1 Single Spacecraft dynamics
The dynamics of a spacecraft as it orbits around the Earth is mathematically
described in an inertial frame of reference as

r̈ = − µ

r3
r + d+ u (2.1.1)

Where µ is the gravitational parameter of the Earth expressed in m3 s−2, d
is the sum of the orbital perturbations acting on the spacecraft and u denotes
the acceleration due to the propulsion system that is applied to control the
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spacecraft. The term − µ
r3
r is the point mass gravity acceleration term. The

point mass gravity acceleration can be described by taking the gradient of the
conservative gravity field as

−∇U(r) = −∇
(
−µ
r

)
= − µ

r3
r (2.1.2)

The most relevant perturbing accelerations in Low Earth Orbit (LEO)
include atmospheric drag, the gravitational acceleration due to real mass
distribution of the Earth. The mass distribution effect is usually modelled as an
infinite series of spherical harmonic scalar functions that define a perturbing
potential with respect to the single point mass potential defined in (2.1.2)
as it is discussed in Section 2.1.2. The dynamics in equation (2.1.1) can
be conveniently described in terms of the keplerian elements of the orbit.
Namely, the standard notation for the keplerian elements will be applied such
that h indicates the angular momentum of the orbit,e inidcates the eccentricity
vector, ν indicates the tru anomaly, Ω indicates the RAAN, i indiactes the
inclination, ω inidcates the argument of pericentrum and eventually ν̄ indicates
the true longitude, which is the sum of the true anomaly and the argument of
pericentrum. The Gauss Variational Equations (GVE) are broadly applied to
describe the dynamics of the keplerian elements when orbital perturbations
are introduced in the system [Equation 10.84 in [12]]

ḣ = r(ds + us) (2.1.3)

ė =
h

µ
sin(ν)(dr + ur) +

1

µh

[(
h2 + µr

)
cos(ν) + µ e r

]
(ds + us) (2.1.4)

ν̇ =
h

r2
+

1

eh

[
h2

µ
cos(ν)(dr + ur)−

(
r +

h2

µ

)
sin(ν)(ds + us)

]
(2.1.5)

Ω̇ =
r

h sin(i)
sin(ω + ν)(dw + uw) (2.1.6)

i̇ =
r

h
cos(ω + ν)(dw + uw) (2.1.7)

ω̇ = − 1

eh

[
h2

µ
cos(ν)(dr + ur)−

(
r +

h2

µ

)
sin(ν)(ds + us)

]
−

r sin(ω + ν)

h tan(i)
(dw + uw)

(2.1.8)

˙̄ν =
h

r2
− r sin(ν̄)

h tan(i)
(dw + uw) (2.1.9)
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The orbital perturbation vector d and the propulsive accelerations u appear in
equation (2.1.3) as described in the Hill coordinate frame H

d =
[
dr ds dw

]
u =

[
ur us uw

]
The Hill’s frame H is defined from the orbital state of the spacecraft as

r̂ =
r

r

ŵ =
r ∧ ṙ

∥r ∧ ṙ∥
=

h

h

ŝ = ŵ ∧ r̂

(2.1.10)

Intuitively r̂ is the direction vector from the Earth to the spacecraft and
it is denoted as the radial direction. The direction ŵ is the direction of
the angular momentum, which is always perpendicular to the instantaneous
orbital plane and it is named cross-track direction. The term instantaneous is
used because of the time varying geometry of the orbital plane when orbital
perturbations are acting on the spacecraft. Eventually the direction ŝ closes
the orthogonal frame definition and it is denoted as the along-track direction.
Note that ŝ is not generally parallel to the velocity vector apart from the case
of purely circular orbits. The Direction Cosine Matrixs (DCMs) that converts
the coordinates of a vector from an inertial coordinate frame I to the frame H
is given by

CH
I =

 cν̄cΩ − sν̄sΩci cν̄sΩ + sν̄cicΩ sν̄si
−sν̄cΩ − cν̄sΩci −sν̄sΩ + cν̄cicΩ cν̄si

sisΩ −sicΩ ci

 (2.1.11)

Which is the result of a 3-1-3 Euler angles parametrization (Ω, i, ν̄). The
angular velocity of the Hill’s frame which respect to the inertial frame ωH/I ,
is expressed in the H frame coordinates as

ωr = sν̄siΩ̇ + i̇cν̄

ωs = sicν̄Ω̇ + i̇sν̄

ωw = Ω̇ci + ˙̄ν

(2.1.12)

Replacing the definition of Ω̇, ω̇ and ˙̄ν in the definition of ωH/I in equation
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ê1

ê2

ê3

(t2)

r̂ŝ
ŵ

(t1)

r̂
ŝ

ŵ

(t0)

r̂

ŝ

ŵ

Figure 2.1: Hill’s frame (r̂, ŝ, ŵ) at different time steps t along a spacecarft
orbit. The inertial frame I is identified by the base vectors (ê1, ê2, ê3)
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(2.1.12)
ωr =

r

h
(dw + uw)

ωs = 0

ωw =
h

r2

(2.1.13)

and the angular acceleration ω̇H/I is then obtained by deriving equation
(2.1.13) with respect to time

ω̇r =
ṙ

h
(dw + uw)− ḣ

r

h2
(dw + uw) +

r

h
(ḋw + u̇w)

ω̇s = 0

ω̇w =
ḣ

r2
− 2ṙch

h

r3

(2.1.14)

2.1.2 Spherical Harmonics gravity terms perturbation
In the case of the restricted two-body problem, the Earth’s gravitational field
is defined by the potential field of a point mass Upm(r) as defined in equation
(2.1.2)

Upm(r) = −µ
r

Although, the real mass distribution of the Earth is not correctly described by
a simple point mass approximation. The most widely used approach to the
describe the conservative gravity field of the Earth considering the real mass
distribution of the planet is given by a series of spherical harmonic functions
[[13],Ch 3.2] as

U(r) = −µ
r︸︷︷︸

Upm

+
µ

r

[
Nz∑
n=2

Rn

rn
JnP

0
n(sϕ) +

Nt∑
n=2

n∑
m=1

Rn

rn
Pm
n (sϕ) (C

m
n cmψ + Smn smψ)

]
︸ ︷︷ ︸

Upert

(2.1.15)

Where the subscripts pm and pert are applied to identify the point mass
potential and the perturbing potential due to the real mass distribution of the
Earth. In equation (2.1.15) Pm

n are the Legendre polynomial of degree n and
order m, R is the mean radius of the Earth, µ it the gravitational parameter of
the Earth, ϕ is longitude ψ geometric latitude. The coefficients Jn,Cm

n and Smn
are tabulated values obtained from space geodesy missions. The latitude and
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longitude are a function of the Earth Fixed Earth Centered reference frame,
such that evaluating U precisely requires knowledge of the real attitude of the
Earth at a given time instant. Although, if only the spherical harmonic terms
Jn are considered, only the latitude is required and no information on the planet
attitude other than the direction of the rotational axis is required. Among
the terms appearing in Upert, the Jn terms are dominant in magnitude. The
J2 term in particular is the largest coefficient among the Jn and it is usually
the only one taken into account. The J3 and J4 terms (Table 2.1) are three
orders of magnitude smaller than J2. Depending on the application, different

zonal term value

J2 0.00108263
J3 −J2 · 2.33936× 10−3

J4 −J2 · 1.49601× 10−3

J5 −J2 · 0.20995× 10−3

J6 J2 · 0.49941× 10−3

J7 J2 · 0.32547× 10−3

Table 2.1: First seven spherical harmonic terms for the planet Earth [14]

levels of accuracy are required in the gravity field description. For example,
in Precise Orbit Determination operations (POD), centimeter level accuracy
in determining the position of spacecrafts is required and for this reason it is
necessary to include as many spherical harmonics as possible in the definition
of the potential. However, POD operations involve offline computations for
which time is not a stringent requirement. For online applications, where time
is a crucial factor, the J2 term is often the only one taken into account. The
gravity potential considering only the zonal harmonics terms is given by

U(r) = −µ
r
+
µ

r

Nz∑
n=2

RnJnP
0
n(sin(ϕ))

rn
= Upm(r) + Uzh(r)

Note that the latitude is defined from the cartesian position r as

sin(ϕ) =
ê3 · r
r

Where it is recalled that ê is a direction vector pointing in the direction of the
Earth rotational axis and it is perpendicular to the Earth equatorial plane. From
the definition of Uzh(r), the perturbation due to higher order zonal harmonics



10 | Background

is given by
dzh = −∇Uzh(r) (2.1.16)

2.1.3 Atmospheric Drag
The atmospheric drag acceleration is defined as

ddrag =
1

2

ρS Cd∥Vatmo∥2

m
V̂atmo = CDρ∥Vatmo∥2V̂atmo (2.1.17)

In equation (2.1.17), S is the surface perpendicular to the wind direction, ρ is
the atmospheric density, m is the mass, Cd is the drag parameter and Vatmo
is the relative velocity of the atmosphere with respect to the body undergoing
the drag acceleration defined as

Vatmo = vwind − ṙ (2.1.18)

Where vwind is the inertial velocity of the wind and ṙ is the inertial
velocity of the body affected by the acceleration. The term CD is the drag
parameter

CD =
1

2

SCd

m

Although the (2.1.17) is a simple analytical formula, the atmospheric density
ρ it is a complex function of time, solar activity, altitude and location on the
Earth surface. Advanced analytical atmospheric models that take into account
for all these variables are available like the Jacchia model and the Harris–
Priester model, but they are difficult to implement on real-time controllers
[15]. In the current work a simple analytical exponential atmospheric model
is applied which is formally defined as

ρ(h) = ρ0e
− h

Hs (2.1.19)

Where ρ0 is the surface density, h is the altitude of the given spacecraft above
the Earth surface andHs is the scale height which is a specific constant for the
Earth atmosphere. The model is mostly valid below 100 km altitude but the
scale height parameter could be adjusted to fit the density at the altitude range
of application.
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2.2 Spacecraft Formation Flight
The Spacecraft Formation Flight (SSF) problem is formally defined as follows
[11]

The tracking or maintenance of a desired relative separation, orientation or
position between or among spacecrafts

While many different approaches to the SSF problem exist [Chapter 1,Section
1.2 in [11]], the Leader/Follower formation approach is the only one analysed
which is defined as follows

Given a reference orbit O, called the chief orbit, it is desired to maintain a
given number of spacecrafts, named the deputies, in a stable collision-free
configuration around O

With the objective of solving the SFF problem applying a Leader/Follower
approach, the relative dynamics of a single deputy around the chief orbit is first
derived based on the work by [10],[9] and [11]. The same dynamics holds for
all the deputies following the prescribed chief orbit. The H observer frame
defined by the chief is the reference frame in which the relative dynamics
of the deputy is derived. In the continuation of this section, all the inertial
accelerations and velocities defined in the I observer frame are denoted by
the dot notation as r̈ and ṙ. On the other hand, the symbols v and a are
applied to denote velocities and accelerations as described in the non-inertial
H observer frame. The coordinate frame is assumed to be the H frame if not
else specified. The reader is referred to Appendix A.1 for a brief review of the
concept of observer and coordinate frame∗.

2.2.1 Chief dynamics
Given a reference spacecraft called the chief, the Hill’s frame H is defined
based on the chief state as presented in equation (2.1.10). The chief state is

∗For a comprehensive review of point mass relative dynamics and kinematics the reader
is referred to Chapter 1 in [16].
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then defined in the H frame as

rch =

rch0
0

 vch =

vr0
0


The inertial acceleration of the chief r̈ch is given as

r̈ch =ach + 2ωH/I ∧ v + ω̇H/I ∧ rch + ωH/I ∧ (ωH/Irch ∧ rch) (2.2.1)

Replacing the definition of ωH/I ,ω̇H/I and the chief state, equation (2.2.1) is
defined component wise as

r̈ch = (v̇r −
h2

r3ch
)r̂ + (

ḣ

rch
)ŝ+ ωr

h

rch
ŵ (2.2.2)

Considering that the chief is unactuated (uch = 0), equation (2.1.1) is
specialised on the chief as

r̈ch = − µ

r3ch
rch + dch (2.2.3)

It is noted that the direction vector r̂ch is equal to the direction vector r̂ of the
H frame since theH frame is defined from the chief position. The perturbation
vector acting on the chief is given by

dch = dch,zh + dch,drag

The zonal harmonic perturbation dch,zh is given by

dch,zh = −∇ µ

rch

Nz∑
n=2

RnJnP
0
n(sin(ϕch))

rnch

Where sin(ϕch) is related to the orbital elements of the chief as

sin(ϕch) = sin(ν̄)sin(i)

On the other hand the drag perturbation dch,drag is defined based on the inertial
velocity of the atmosphere of the Earth with respect to the deputy velocity.
Assuming the atmosphere as rigidly attached to the Earth surface, the inertial
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wind speed is given by

vwind = ωe ∧ rch = ∥ωe∥ê3 ∧ rch

Where ∥ωe∥ = 7.292 × 10−3 rad/s and the inertial velocity of the chief is
defined as

ṙch = vch + ωH/I ∧ rch

The velocity of the wind toward the chief is eventually given by

Vatmo,ch = vwind−ṙch = vrr̂+

(
h

r
− ωe rch cos(i)

)
ŝ+(ωe rch cos(ν̄) sin(i)) ŵ

and the drag acceleration acting on the chief is then given by

dch,drag = CDchρ∥Vatmo,ch∥2V̂atmo,ch

Using the GVE to define the time derivative of i,ν̄ and Ω, the state and
dynamics of the chief along its orbit is fully defined by the following set of
parameters named here the implicit keplerian state (b) of the chief

ṙch = vr

v̇r = − µ

rch
+
h3

r3ch
+ dr,ch

ḣ = rchds,ch

Ω̇ =
rch

h sin(i)
s(ω + ν)dw,ch

i̇ =
r

h
cos(ν̄)dw,ch

˙̄ν =
h

r2ch
− rsin(ν̄)

h tan(i)
dw,ch

(2.2.4)

Note that only the orbital elements of the chief are further considered such
that the parameters i, ν̄, h and Ω are always considered to be referred to the
chief.
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2.2.2 Deputy Dynamics
The deputy relative position and velocity with respect to the chief, as described
in the H frame, are defined component wise as

δr =

δrδs
δw

 δv =

δvrδvs
δvw


While the the absolute position of the deputy is defined by rdep = rch+δrdep.
The deputy inertial acceleration is defined by equation (2.1.1)

r̈dep = − µ

r3dep
rdep + udep + ddep (2.2.5)

Where rdep is given component wise as

rdep = ((rch + δr)r̂ + δsŝ+ δwŵ)

The zonal harmonic perturbation ddep,zh for the deputy is given by

ddep,zh = −∇ µ

rdep

Nz∑
n=2

RnJnP
0
n(sin(ϕdep))

rndep

Where sin(ϕdep) is expressed as

sin(ϕdep) =
zdep
rdep

= (rch + δr) sin(i)sinν̄ + δs sin(i)cos(ν̄) + δw cos(i)

It is noted that zdep was obtained by multiplying vector rdep by the transpose
of the direction cosine matrix (CH

I )T = CI
H in (2.1.11) and taking the z

component of the resulting vector. Also it is recalled that the orbital elements
i and ν̄ are parameters of the chief orbit. The inertial velocity of the deputy is
defined identically to the inertial velocity of the chief as

ṙdep = vdep + ωH/I ∧ rdep

Where vdep is the total velocity of the deputy as seen in the chief frame and
it defined as vdep = vch + δv. The relative velocity of the wind toward the
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deputy is given by
Vdep,atmo = vwind − ṙdep

From the definition of Vdep,atmo, the drag acceleration acting on the deputy is
then derived as

ddep,drag = CDdepρ∥Vatmo,dep∥2V̂atmo,dep

Eventually, it is worth highlighting the fact that the deputy inertial dynamics
(2.2.5) is a function of the chief implicit keplerian state b and the deputy
relative state defined as δx such that

δx =

[
δr

δv

]
This consideration is further developed in the next section

2.2.3 Nonlinear Relative Dynamics
Now that the dynamics of the chief and deputy are defined, the relative
dynamics of the deputy around the chief is developed. Two different
approaches are normally applied to derive the relative dynamics of the deputy
with respect to the chief in the H frame. The Lagrangian method, which is
based on energy considerations, and the Newtonian method which is based
on the direct summation of all the forces involved in the system [Chapter 4 in
[11]]. However the resulting dynamics is the same, only the Newton method
is presented here as it is considered to involve a lower level of abstraction
in comparison to the Lagrangian method. The dynamics of the deputy with
respect to the chief orbit as described in the rotating H observer frame is given
by

δa = δr̈ − 2ωH/I ∧ δv − ω̇H/I ∧ δr − ωH/I ∧ (ωH/I ∧ δr) (2.2.6)

In equation (2.2.6) the relative inertial acceleration δr̈ := r̈dep−r̈ch is obtained
by subtracting equation (2.2.5) to equation (2.2.1). As discussed previously,
the dynamics of the chief is fully defined by the implicit keplerian state b of
the chief so that the relative dynamics of the deputy in the H frame of the
chief given by (2.2.6) could be thought as a parametric nonlinear system in the
form

δa = δa(δx, b)
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Where δx is the relative state of the deputy with respect to the chief in the H
frame. After dropping the subscript dep from the control u as it is assumed
that the deputy is the only capable of actuating, the full form of equation (2.2.6)
is given by

δa(δx, b) = − µ

r3dep
rdep +

µ

r3ch
rch︸ ︷︷ ︸

δr̈g

+δd

− 2ωH/I ∧ δv − ω̇H/I ∧ δr − ωH/I ∧ (ωH/I ∧ δr)︸ ︷︷ ︸
δafc

+u

(2.2.7)

And the state-space form of the perturbed relative dynamics in equation (2.2.6)
becomes

δẋ =

[
δv

δa

]
= f(δx, b) + g(δx, b)(u+ δd)

g(δx, b) =

[
O3x3

I3x3

]
f(δx, b) =

[
δv

δr̈g + δafc

]
=

[
fr
fv

] (2.2.8)

Where the relative perturbation vector δd is defined as

δd = ddep,drag − dch,drag + ddep,zh − dch,zh = δddrag + δdzh

The perturbation δddrag is denoted as differential drag perturbation while δdch
is the differential zonal harmonics term perturbation. It is highlighted that
although f is a function of the orbital elements of the chief spacecraft b, the
relation between b and time is defined by the dynamics in equation (2.2.4)
so that f could also be described as a function of time. This point will be
recalled in the following sections. The section is concluded noting that in case
the perturbation vector is considered to be zero(δd = 0) and the chief orbit is
considered circular e = 0, then the implicit keplerian state dynamics becomes
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simply
ṙch = vr

v̇r = 0

ḣ = 0

Ω̇ = 0

i̇ = 0

˙̄ν =
h

r2

(2.2.9)

2.2.4 Linearised relative dynamics
The relative spacecraft dynamics derived in equation (2.2.8) is an highly
nonlinear dynamics. Nevertheless, it is possible to linearise equation (2.2.8)
around the chief orbit and analyse the linearised system instead of the nonlinear
one. Different linearization strategies were developed over the years and an
exhaustive list of such linearised solutions to equation (2.2.8) are summarised
and compared in [17]. Particularly relevant is the model derived by [18] which
included the effect of J2 and atmospheric drag in a linear time variant model
describing the motion of the deputy around the chief by means of the relative
keplerian state instead of the relative cartesian state. In current work, only the
Clohessy-Wiltshire (CW) linear model will be further analysed. This model
is derived based on the assumption that no orbital perturbations are acting on
the system, the chief orbit is circular and that the separations between chief
and deputy is small compared to the orbital radius of the chief orbit. Under
such assumptions, a linearised model for equation (2.2.8) is developed in state-
space form as

δẋ(t) =



δṙ

δṡ

δẇ

δv̇r
δv̇s
δv̇w

 = A



δr

δs

δw

δvr
δvs
δvw

+B

ur,depus,dep
uw,dep

 (2.2.10)
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Where A and B are defined as

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2
w 0 0 2ωw 0 0

0 0 −2ωw 0 0 0

0 −ω2
w 0 0 0 0

 B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

 (2.2.11)

Systems equation (2.2.10) is a linear time-invariant system for which analytical
closed form solutions is available in case of un-actuated dynamics (udep = 0)
[[11],Ch 5,pag 85]. In at time t0 the following condition is met

[6ωwδs(t0) + 3δvs(t0)] = 0 (2.2.12)

Then the state of the deputy will not drift from the chief (the origin of the Hill’s
frame). On the other hand, if equation (2.2.12) is satisfied, then the solution to
(2.2.10) represent a family of closed periodic orbits, with period equal to the
orbital period of the chief (T = 2π

ωz
). As shown in [11], it is possible to write

such closed period orbits in the amplitude-phase parametric form

δr(t) = ρrsin (ωwt+ αr)

δs(t) = ρs + 2ρrcos (ωwt+ αr)

δw(t) = ρwsin (ωwt+ αw)

δvr(t) = ωwρrcos (ωwt+ αr)

δvs(t) = −2ωwρrsin (ωwt+ αr)

δvw(t) = ωwρwcos (ωwt+ αw)

(2.2.13)

The parametric form in equation (2.2.13) is particularly suitable for trajectory
design purposes. Indeed, equation (2.2.13) highlights the fact that all relative
closed orbits of the deputy around the chief could be projected as a 2:1 ellipse
on the r̂ŝ plane. On the other hand, the cross-track motion can be described
as an harmonic oscillator with period equal to the orbital period of the orbit of
the chief. Through out the presentation, the notation PRO(ρr×2ρr×ρw−ρs)
is applied to define the PRO geometry. The phase and amplitude parameters
appearing in equation (2.2.13), are all functions of the initial conditions of the
system, so that there is a direct mapping between orbit parameters and initial
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conditions

ρr =

√
δv2r(t0) + δr2(t0)ω2

w

ωw
ρs = [δs(t0)− 2δvr(t0)/ωw]

ρw =

√
δv2w(t0) + δw2(t0)ω2

w

ωw

αr = tan−1

(
ωw δr(t0)

δvr(t0)

)
αw = tan−1

(
ωw δw(t0)

δvw(t0)

)
(2.2.14)

Eventually the discrete model of the continuous linear time-invariant system
in (2.2.10) is given by

δx(k + 1) = Adδx(k) + Bdudep(k) (2.2.15)

Where the matrices Ad and Bd are defined as

Ad =



4− 3c∆ω 0 0 1
ωw
s∆ω

2
ωw

(1− c∆ω) 0

6(s∆ω − (∆ω)) 1 0 − 2
ωw

(1− c∆ω)
1
ωw

(4s∆ω − 3∆ω) 0

0 0 c∆ω 0 0 1
ωw
s∆ω

3ωws∆ω 0 0 c∆ω 2s∆ω 0

−6ωw(1− c∆ω) 0 0 −2s∆ω 4c∆ω − 3 0

0 0 −ωws∆ω 0 0 c∆ω



Bd =



1
ω2
w
(1− c∆ω)

2
ω2
w
((∆ω)− s∆ω) 0

− 2
ω2
w
((∆ω)− s∆ω)

4
ω2
w
(1− c∆ω)− 3

2
∆t2 0

0 0 1
ω2
w
(1− c∆ω)

1
ωw
s∆ω

2
ωw

(1− c∆ω) 0

− 2
ωw

(1− c∆ω)
4
ωw
s∆ω − 3∆t 0

0 0 1
ωw
s∆ω


(2.2.16)

The short hand notation ∆ω is used to denote the angle ωw∆t.

2.3 Model Predictive Control
Model Predictive Control is an optimal control technique based on the on-line
solution of a finite horizon optimal control Finite Horizon Optimal Control
(FHOC) problem. Its superiority to the more classical control strategies like
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Linear Quadratic Regulator (LQR) regulator and PID controllers stems from
the possibility of defining input and output constraints that are easily inserted
in the FOCH problem formulation. Thank to the recent developments in
hardware capabilities, it is nowadays possible to solve optimization problems
within a fraction of a second, which makes MPC particularly appealing for
space systems applications, where fuel and energy consumption are of critical
importance. The reader is referred to [19] for a thorough introduction to the
history and applications of MPC control while in the following section only
the fundamental aspects of sample data MPC control are briefly revised and
applied to the deputy dynamics presented in Section 2.2.

2.3.1 Preliminary notation
In the coming presentation, the notation k∆t denotes a discrete time instant,
where k ∈ N defines a finite number of time steps from an initial time t0 and
∆t > 0 denotes a positive finite sampling interval∗. The set Tk is applied to
denote the continuous time interval in between two time steps as

Tk = {t : t ∈ [k∆t, (k + 1)∆t]} (2.3.1)

Furthermore the notation a(i∆t|k∆t) ∀i ∈ 0 . . . N is applied to indicate the
value of a at i− steps ahead relative to time step k∆t. The perturbed and
unperturbed dynamics of the deputy relative to the chief are recalled here from
(2.2.8),

δẋ = f(δx(t), b(t)) + g(δx(t), b(t))u(t) (2.3.2)

δ ˙̃x = f(δx̃(t), b̃(t)) + g(δx̃(t), b̃(t))(u(t) + δd(t)) (2.3.3)

Where δx ∈ X ⊆ R6 is the nominal relative state of the deputy, b ∈ B ⊆ R6

is the nominal implicit orbital elements vector of the chief, δd ∈ R3 is the
relative orbital perturbations vector and u ∈ U ⊆ R3 is the control input
deriving from the propulsion system of the deputy. The variables δx̃ and b̃ are
used to distinguish between the perturbed and unperturbed system dynamics
such that δx̃ ∈ X̃ ⊆ R6 is the perturbed relative state of the deputy, and
b̃ ∈ B̃ ⊆ R6 is the perturbed implicit keplerian state vector. It is assumed that
X̃ , X and U are all compact sets containing the origin. Next, the sample time
version of the dynamics in equation (2.3.2) and (2.3.3) is obtained through

∗N denotes all natural numbers including zero



Background | 21

a Runge-Kutta integration scheme under Zero-Order Hold control such that
u(t) = u(k∆t) ∀t ∈ Tk

δx((k + 1)∆t) = F (δx(k∆t), b(k∆t),u(k∆t)) (2.3.4)

δx̃((k + 1)∆t) = F (δx̃(k∆t), b̃(k∆t),u(k∆t) + δd(k∆t)) (2.3.5)

A nominal reference trajectory for the deputy state is additionally defined as
δxr(t) ∈ Xr ⊆ X together with its corresponding reference input trajectory
ur(t) ∈ Ur ⊆ U such that

δxr((k + 1)∆t) = F (δxr(k∆t), b(k∆t),ur(k∆t))

It is assumed that δxr(t) is a continuously differentiable function of time.
The discrete time state errors with respect to the reference trajectory for the
perturbed and unperturbed dynamics are defined as

eδx(k∆t) = δx(k∆t)− δxr(k∆t)

ẽδx(k∆t) = δx̃(k∆t)− δxr(k∆t)
(2.3.6)

and the corresponding input error is defined as

eu(k∆t) = u(k∆t)− ur(k∆t) (2.3.7)

2.3.2 Sample data MPC control
Consider a state and input reference trajectories δxr(t), ur(t) as defined in
Section 2.3.1. It is desired to steer the perturbed state δx̃(t) toward the
reference trajectory δxr(t) by only knowing the nominal discrete dynamics
(2.3.4). Given an integer number of prediction stepsN ∈ N\{0} and given an
initial perturbed state error ẽδx(k∆t) at time k∆t, this objective is formalised
by a scalar function VN : X × UN → R≥0 referred as the value function and
formally defined as

VN(eδx(k∆t), ū(k∆t)) :=
N−1∑
i=0

eTδx(i∆t|k∆t)Qeδx(i∆t|k∆t)+

+eTu(i∆t|k∆t)Reu(i∆t|k∆t) + Vf (eδx(N∆t|k∆t))
(2.3.8)
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Where the notation ū(k∆t) ∈ UN is used to define an N -steps control
sequence as

ū(k∆t) =
[
u(0|k∆t),u(∆t|k∆t), ....u((N − 1)∆t|k∆t)

]
The matrices R and Q in equation (2.3.8) are both positive definite matrices
and commonly defined as the control cost matrix and the state cost matrix
respectively. The function Vf : X → R≥0 is referred as the terminal cost,
which penalises the final nominal state error and it is also a positive definite
convex function. It is noted that VN mathematically formalises a cost that
decreases as the input and state error tend to zero. The MPC sample data
controller then solves the following FHOC problem at every sample time k∆t
when a new state measurement is available

min
ū∈UN

VN(eδx(k∆t), ū(k∆t)) (2.3.9a)

δx(0|k∆t) = δx̃(k∆t) (2.3.9b)
δx((i+ 1)∆t|k∆t) = F (δx(i∆t|k∆t), b(i∆|k∆t),u(i∆t|k∆t))

∀i ∈ [0, 1..N − 1]
(2.3.9c)

u(i∆t|k∆t) ∈ U ∀i ∈ [0, 1, ..N − 1] (2.3.9d)
δx(i∆t|k∆t) ∈ X ∀i ∈ [0, 1, ..N − 1] (2.3.9e)
δx(N∆t|k∆t) ∈ Xf ⊆ X ∀i ∈ [0, 1, ..N − 1] (2.3.9f)

Where equation (2.3.9b) specifies that the initial predicted state must be equal
to the measured state at time step k∆t and equation (2.3.9c) specifies that the
nominal state must evolve following the discrete nominal dynamics in equation
(2.3.4). On the other hand, equation (2.3.9d) and equation (2.3.9e) specify
that the control input and state must remain inside the admissible control and
state sets respectively while (2.3.9f) constraints the final predicted state to be
inside a subset of the nominal state set. The solution to (2.3.9) is a an optimal
control sequence ū∗(k∆t) and an optimal predicted nominal state trajectory
which minimises the value function VN at time step k∆t. It is noted that
due to the effect of the perturbations, the predicted nominal state trajectory
predicted from the MPC solution will not correspond to the perturbed real state
trajectory. For this reason, only the first optimal control input u∗(0|(k∆t)) is
applied to the system in equation (2.3.4) in a Zero-Order hold fashion such
that u(t) = u∗(0|(k∆t)) ∀t ∈ Tk. At the next time step, the optimal control
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problem (2.3.9) is solved again and the process is repeated recursively so
that a feedback law Kk(ẽδx(k∆t), k∆t) := u∗(0|(k∆t)) is obtained. Note
that ẽδx was introduced in the feedback law as at time k∆t the condition
ẽδx = eδx is enforced by equation (2.3.9b). Due to the nonlinear dynamics
constraint, the FOCH problem (2.3.9) is a non-convex optimisation problem
whose solution can only be guaranteed to be locally optimal and not globally
optimal solution.

2.3.3 Stability and Feasibility
A well known problem when dealing with MPC control involves the
assessment of the stability of the system under the optimal feedback
control law Kk(ẽδx(k∆t), k∆t) and the feasibility of the FHOC problem
(2.3.9) at every time step. Indeed, the fact that Kk(ẽδx(k∆t), k∆t) is
the optimal solution to (2.3.9) does not mean that it is also a stabilising
control law for the perturbed system dynamics (see for example the
discussion given in [[20],Chapter 1.3.4]). Concerning recursive feasibility,
the problem is addressed by defining a terminal set Xf that is a control
invariant set, meaning that for every δx̃ ∈ Xf , it exist a valid control
feedback input Kk(ẽδx(k∆t), k∆t) ∈ U such that δx̃((i + 1)∆t|k∆t) =

F (δx̃(i∆t|k∆t), b̃(i∆|k∆t), Kk(ẽδx(k∆t), k∆t)) ∈ Xf . This conditions
guarantees that the MPC controller has at least one feasible solution for every
state inside the terminal set that keeps the system inside the terminal set, which
then ensures recursive feasibility of the controller [21]. For nonlinear systems,
a terminal set is commonly found as follows. First the nonlinear system
is linearised around the reference trajectory and a suitable stabilising linear
feedback u(k) = Kẽ(k) is found through classic linear control methods (often
LQR feedback). Second, a suitable terminal set Xf ⊆ X̃ is found considering
that Kẽδx(k) ∈ U ∀δx̃ ∈ Xf . Concerning stability, this property is
normally achieved by ensuring that Vf is a control Lyapunov function within
the terminal set. Both these properties are analysed specifically for the deputy
dynamics in Chapter 4. The reader is referred to [21] for a deeper analysis of
stability and feasibility issues in MCP control.
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Chapter 3

Control Barrier Functions for
sample data system

In the previous Chapter, the relative dynamics of a deputy around the chief was
revised together with the fundamental aspects of MPC control. However, the
concept of safety was not addressed so far. In most real world applications, it
is necessary to ensure that the controlled dynamical system remains within
a certain safe subset of the full state-space. The notion of safety varies
from case to case since different constraints apply to different systems. For
example, it may be desirable to avoid regions of the state-space where the
system is excessively close to an obstacle or where the controller is known
to become unstable. In the past few years, the concept of Control Barrier
Function (CBF) has been developed as suitable framework to analytically
define invariant subsets of the state space where the system is allowed to move
freely while being safe based on a predefined notion of safety [5]. In the
coming subsections, the fundamental theoretical aspects of Control Barrier
Functions for continuous time and sample data systems are revised. It is noted
that for the sake of generality, this section will not be directly specialised to
the deputy dynamics, but for a general nonlinear dynamics with the same
properties of the deputy dynamics. The results presented here will be then
specialised to the deputy dynamics in Section 4.

3.1 Continuous time Control Barrier Functions
A general control affine dynamical systems is defined as
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ẋ(t) = f(x(t), t) + g(x(t), t)u(t) (3.1.1)

Where t ∈ I ⊆ R≥0 represents the time, x(t) ∈ X ⊆ Rn defines the state
trajectory of the system to be controlled and u(t) ∈ U ⊆ Rm defines the
control input. It is assumed that X , U and I∗ are all compact and convex
sets containing the origin. The functions g : Rn × R≥0 → Rn×m and f :

Rn ×R≥0 → Rn are at least of class C1 on X ×I (The class of functions Ck

consists of all the functions that are k times continuously differentiable). It is
then desired that the system remains in a possibly time-varying set C(t) ⊂ X ,
denoted as the safe set, where the system state is considered to be safe. This
objective is formalised as follows

Definition 1 (Forward invariance [22]). A set C(t) is defined as forward
invariant for a given control law u(t) if for each x0 ∈ C(t0) there exists a
unique solution x(t) : [t0, t1] → X to equation (3.1.1) with x(t0) = x0 such
that x(t) ∈ C(t) for all t ∈ [t0, t1].

Consider now a continuously differentiable scalar function h : D × I → R,
with D ⊆ X being compact, and consider CS(t) and ∂CS(t) to be the super
level set and the border the of the super level set of h, defied as follows

CS(t) := {x ∈ D : h(x, t) ≥ 0}
∂CS(t) := {x ∈ D : h(x, t) = 0}

(3.1.2)

The following definition of CBF is introduced

Definition 2. (Control Barrier Function [7]) Given a set CS(t) defined as in
equation (3.1.2) for a continuously differentiable function h : D × I → R,
then h(x, t) is called Control Barrier Function on the set D with CS(t) ⊂ D ⊆
X ∀t ≥ 0 if there exist a differentiable extended class K-function α(·) such
that

sup
u∈U

[
∂h(x, t)

∂t
+ Lfh(x, t) + Lgh(x, t)u+ α(h(x, t))

]
≥ 0 (3.1.3)

Where the symbol L indicates the Lie derivative†. Differently from [7], it is
∗It is clear from the context that I indicates here a real time interval and not an inertial

reference frame
†The Lie derivative of a general scalar function h along a vectorial field f is given by

Lfh(x, t) := ∇h(x, t)f(x, t)



26 | Control Barrier Functions for sample data system

assumed that α is differentiable in the current work. The following Lemma
from [22] is then sufficient to guarantee that if condition (3.1.3) is respected,
then CS(t) from (3.1.2) is forward invariant.

Lemma 1 (Lemma 1 in [22]). Let α : R≥0 → R≥0 be a continuous class
K-function and η : [t0, t1] → R be an absolutely continuous function. If
η̇(t) ≥ −α(η(t)) for every t ∈ [t0, t1], and η (t0) ≥ 0, then η(t) ≥ 0 for all
t ∈ [t0, t1]

Given Definition 2, the set of all safe control input to system (3.1.1) is defined
as

US(x) = {u ∈ U :
∂h(x, t)

∂t
+Lfh(x, t)+Lgh(x, t)u(t)+α(h(x, t)) ≥ 0 ∀t ≥ 0}

If it is possible to guarantee that US(x)∩U ̸= ∅ ∀x ∈ CS(t), then h is a valid
CBF. Additionally, a valid CBF constraint ψ(x,u, t) : D × U × I → R is
defined as

ψ(x,u, t) :=
∂h(x, t)

∂t
+ Lfh(x, t) + Lgh(x, t)u(t) + α(h(x, t)) (3.1.4)

and safety is ensured by enforcing the condition ψ(x,u, t) ≥ 0 inside
CS(t).

3.2 High Order Control Barrier Functions
It often occurs in real systems, that the control input does not appear directly
in the first time derivative of h(x, t) due to the fact that Lgh(x, t) is identically
zero. As an example from [23], it is considered a simplified one dimensional
car model

[
ẋ1
ẋ2

]
=

[
x2
0

]
+

[
0

u

]
(3.2.1)

Here x1 could be thought as the position while x2 could be though as the
velocity. Eventually u is the acceleration imposed on the car. Any CBF for
which only x1 appears explicitly in the definition of h(x, t) will not have the
control u as argument of ḣ(x, t). Although, it could still be desired to define
a safe set in terms of safe positions of the car. This motivates the definition of
an High Order Barrier Function (HOCBF) as solution to this problem. First,
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the definition of relative degree is given

Definition 3 (Definition 5 in [23]). The relative degree of a continuously
differentiable function h : Rn × R≥0 → R with respect to system equation
(3.1.1) is the number of times it is needed to differentiate it along the dynamics
of equation (3.1.1) until control u explicitly shows.

In the case h(x, t) is of relative-degree r for system (3.1.1), it is still possible
to guarantee safety within the CS(t), but at price of reducing the size of CS(t).
Based on the work developed in [23], an HOCBF is defined starting from the
nominal CBF as follows. Given h(x, t) : D× I is a CBF for system equation
(3.1.1), a cascade of functions Hi : D × I → R is defined

H0(x, t) = h(x, t)

H1(x, t) = Ḣ0(x, t) + α0(H0)

H2(x, t) = Ḣ1(x, t) + α1(H1)

....

Hr−1(x, t) = Ḣr−2(x, t) + αr−2(Hr−2)

(3.2.2)

Where αi(t) : R≥0 → R≥0 ∀ i = 0, . . . r − 2 are class K-functions such that
αi is of class Cr−i. In addition, a safe set for every Hi is defined as

CS0(t) = {x ∈ D : H0 ≥ 0}
CS1(t) = {x ∈ D : H1 ≥ 0}
CS2(t) = {x ∈ D : H2 ≥ 0}

....

CS(r−1)(t) = {x ∈ D : Hr−2 ≥ 0}

(3.2.3)

From the definition of the cascade of functionsHi and the cascade of safe sets
CSi the definition of HOCBF is given as follows

Definition 4 (modified from Definition 6 in [23]). Let Hi ∀i = 0, . . . r − 1

be defined as in equation (3.2.2) and let CSi ∀i = 0, . . . r − 1 be defined as
in equation (3.2.3). The function h(x, t) : D × I → R is a High Order
Barrier Functions (HOCBF) for system equation (3.1.1) if it is r − 1 times
differentiable in x and t, and there exist αi(t) : R≥0 → R≥0 ∀ i = 0, . . . r − 2

class K-functions such that αi is of class Cr−1 and
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∂Hr−1(x, t)

∂t
+ LfHr−1(x, t) + LgHr−1(x, t)u(t) + αr−1(Hr−1(x, t)) =

∂rh(x, t)

∂tr
+ Lrfh(x, t) + LgLr−1

f h(x, t)u(t) +O(h(x, t))+

αr−1(Hr−1(x, t)) ≥ 0 ∀x ∈ ∩
i=0..r−1

Ci(t)
(3.2.4)

Where O(h(x, t)) denotes the remaining Lie derivatives along f and partial
derivatives with degree less than or equal to r−1.

Furthermore the following essential result is reported from [23].

Theorem 1 (Theorem 4 in [23]). The set ∩
i=0..r−1

CSi(t) is forward invariant for
system (3.1.1) if h(x, t) is an HOCBF

Similarly to the definition of CBF constraint, the HOCBF constraint
ζ(x,u, t) : D × U × I → R is defined as

ζ(x,u, t) :=
∂Hr−1(x, t)

∂t
+LfHr−1(x, t)+LgHr−1(x, t)u+αr−1(Hr−1(x, t))

(3.2.5)
And forward invariance of the safe set ∩

i=0..r−1
CSi(t) is enforced by ensuring

that the condition ζ(x,u, t) ≥ 0 is met everywhere inside ∩
i=0..r−1

CSi(t).

Remark. In this section, smoothness assumptions were made relative to the
α functions appearing in the CBF and HOCBF definition. The original
definitions present weaker smoothness assumptions that are instead required
in the current work.

3.3 Sample Data Control Barrier Function
For a sample data system, the state of the system is only available at
discrete time steps k∆t. When a Zero Order Hold sample data controller
is applied, the control is held constant during the sampling intervals Tk :=

[k∆t, (k + 1)∆t] such that only the condition ψ(x(k∆t),u(k∆t), k∆t) ≥ 0

or ζ(x(k∆t),u(k∆t), k∆t) ≥ 0 can be satisfied by the controller. Although,
these last conditions only ensures safety at time instant k∆t but not inside the
interval Tk. This problem is further developed in this sections based on the
work by [7]. But first it is relevant to recalled that given a general multivariate
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function f : X ⊆ Rn → Y ⊆ Rm (not to be confused with f from equation
(3.1.1)), then f is Lipschitz continuous on X if

||f(x2)− f(x1)|| ≤ K||x2 − x1|| ∀x1, x2 ∈ X (3.3.1)

where K ≥ 0 is called the Lipschitz constant for f [[24],Def A.1]. The
following lemma generalises the CBF constraint definition to the case of
sample data control

Lemma 2. (modified by [7]) Consider the control affine system (3.1.1) where
the functions g : Rn × R≥0 → Rn×m and f : Rn × R≥0 → Rn are
both continuously differentiable functions of t and x on the set I × X . Let
a sampling interval Tk := [k∆t, (k + 1)∆t] ⊂ I for some ∆t > 0 such
that (3.1.1) is subject to a constant bounded feedback control input u(t) =

u(x(k∆t), k∆t) ∈ U ∀t ∈ Tk shorthanded as u(x(k∆t)). Furthermore
consider a valid CBF h : D × I → R as in Definition 2 that is at least of
class C2 on D × I , its associated safe set CS(t) ⊂ D and the associated
continuous and differentiable CBF constraint ψ : D×U ×I → R as defined
in (3.1.4). Given that at time instant k∆t, x(k∆t) ∈ CS(k∆t) and that the
constant feedback control input u(x(k∆t)) ∈ U respects the condition

sup
u∈U

ψ(x(k∆t),u(k∆t), k∆t)− L∆t ≥ 0 (3.3.2)

Where L is defined as

L = max
(x,u,t)∈D×U×I

|ψ̇(x,u, t)|

then it holds that

x(k∆t) ∈ CS(k∆t) ⇒ x(t) ∈ CS(t) ∀t ∈ Tk (3.3.3)

Proof. Given a constant feedback input u(x(k∆t)) on the interval Tk, it is
known that u(x(k∆t)) is bounded on Tk as U is compact. Since f and g are
differentiable on X and I and u(x(k∆t)) is constant, then the solution x(t)

to (3.1.1) is uniquely defined on an interval [k∆t, τ ] for some τ ≤ (k + 1)∆t

[[25], Thm. 54]. Furthermore, x(t) is C2 on X × [k∆t, τ ] [[25],Prop C.3.11].
The CBF constraint ψ(x,u, t) is defined for a constant feedback input as

ψ(x,u(x(k∆t)), t) =
∂h(x, t)

∂t
+Lfh(x, t)+Lgh(x, t)u(x(k∆t))+α(h(x, t))
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Since f , g and α are C1 in their respective domains and h is C2, then
ψ(x,u(x(k∆t)), t) is also C1 on X × [k∆t, τ ] as it is the composition of
differentiable functions. Moreover, as x(t) is a continous and differentiable
function of t in [k∆t, τ ] (as pointed out before) and sincex(k∆t) ∈ C(k∆t) ⊂
D, then by continuity of x(t) there must be a time τ0 ∈ [k∆t, τ ] for which
x(t) ∈ D. By direct application of the Mean Value Theorem [[26],Thm.3.4]
it is possible to state that there exist a time tc ∈ [k∆t, τ0] such that

ψ(x(t2),u(x(k∆t)), t2)− ψ(x(t1),u(x(k∆t)), t1) =

d
dt
ψ(x(tc),u(x(k∆t)), tc) (t2 − t1)∀t1.t2 ∈ [k∆t, τ0]

(3.3.4)
Where it is recalled that dψ

dt ≜ ψ̇(x(t), u(t), t) is the total time derivative of ψ.
The following chain of inequalities is then derived

|ψ(x(t2),u(x(k∆t)), t2)− ψ(x(t1),u(x(k∆t)), t1)| ≤

| d
dt
ψ(x(tc),u(x(k∆t)), tc)| |t2 − t1| ≤

max
(x,u,t)∈D×U×I

|dψ(x,u, t)
dt

| |t2 − t1| = L |∆t| ∀t1, t2 ∈ [k∆t, τ0]

(3.3.5)

The first inequality is obtained by direct application of the Cauchy-Schwarz
inequality theorem on equation (3.3.4), while the second one is obtained by
upper bounding the total time derivative ofψ under constant inputu(x(k∆t)).
Note that sup

(x,u,t)∈D×U×I
| d

dtψ(x,u, t)| is known to exist as ψ is continuously

differentiable on a Cartesian product of compact sets, which is also compact
[[27],Tychonoff’s Theorem]. Next, it is noted from (3.3.5), that the maximum
negative variation of ψ(x,u, t) over the interval [k∆t, τ0] is bounded as

ψ(x(t2),u(x(k∆t)), t2)−ψ(x(t1),u(x(k∆t)), t1) ≥ −L |∆t| ∀t1, t2 ∈ [k∆t, τ0]

Replacing t1 with k∆t and adding inequality (3.3.2) to the right and left hand
side yields

ψ(x(t2),u(x(k∆t)), t2) ≥ 0 ∀t2 ∈ [k∆t, τ0] (3.3.6)

It is then clear that ψ(x(t),u(x(k∆t)), t) = ḣ(x, t) + α(h(x, t)) ≥ 0 ∀t ∈
[k∆t, τ0] which ensures that x(t) ∈ CS(t) ∀t ∈ [k∆t, τ0] by Lemma 1.
Now it is proved that x(t) ∈ CS(t) for all t ∈ [k∆t, τ ] by contradiction.
Suppose instead that for some τa ∈ (τ0, τ ] ,x (τa) ∈ D\CS(t) and x(t) ∈ D
for all t ∈ [k∆t, τa] (i.e., the solution has left CS(t), but not D). Then
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x(t) must leave CS(t) at some t < τa. Furthermore, since the closed-loop
dynamics are differentiable on D, x(t) is uniquely defined on [k∆t, τa] (this
is shown by repeatedly applying [[25], Thm. 54] since x(t) remains in D
over which local differentiability of the closed-loop dynamics holds). To leave
CS(t), ḣ(x, t) < 0 must hold on ∂CS(t). The maximum negative variation
of ψ(x(t),u(x(k∆t)), t) is then recomputed over the interval [k∆t, τa] and
it is obtained again that ψ(x(t),u(x(k∆t)), t) ≥ 0∀t ∈ [k∆t, τa] as L is
independent from τa as it is from τ0. Therefore we see that ḣ(x, t) ≥ 0 holds
for any x(t) ∈ C(t), t ∈ [k∆t, τa]. Hence, the contradiction is reached, and so
x(t) can never leave C(t) (and D) on t ∈ [k∆t, τ ]. Since it was showed that
x(t) remains in a compact subset on the interval [k∆t, τ ] (namely D), then
x(t) exist and is unique over the whole interval [k∆t, (k + 1)∆t] [[25],Prop.
C.3.6]. By the same arguments applied for the previous sub intervals , it is
proved again that ψ(x(t),u(x(k∆t)), t) ≥ 0 ∀t ∈ [k∆t, (k + 1)∆t] which
ensures that x(t) ∈ CS(t) ∀t ∈ [k∆t, (k + 1)∆t] by Lemma 1.

Following the result from Lemma 2, the definition of sample data CBF (SD-
CBF) follows

Definition 5 (SD-CBF modified from [7]). Consider the system (3.1.1) and a
continuously differentiable function h : D × I → R, the associated safe set
CS(t) ⊂ D for all t ≥ 0 as defined in (3.1.2). The function h is a Sample
Data Control Barrier Function (SD-CBF) if for a given ∆t > 0 there exists
a differentiable extended class- K function α, where α ◦ h : D × I → R is
differentiable on D× I , such that for any point x ∈ D and k ∈ N0 there
is a constant feedback input u(x(k∆t), k∆t) ∈ U , shortened to u(k∆t),
satisfying the condition:

Lfh(x(k∆t), k∆t) + Lgh(x(k∆t), k∆t)u(k∆t) + α(h(x̃, k∆t)) ≥ L∆t

where L is a valid Lipschitz constant as defined in Lemma 2

The set of safe control inputs US for a given time step ∆t is defined by

US(x,∆t) = {u ∈ U :
∂h(x, t)

∂t
+Lfh(x, t)+Lgh(x, t)u+α(h(x, t))−L∆t ≥ 0}

It is worth noting that the constant L is a valid Lipschitz constant for the
CBF constraint ψ as it respects condition (3.3.1), and L is a function of the
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maximum allowed control ∥u∥+, where ∥u∥+ is defined as

∥u∥+ = max
u∈U

∥u∥

Note that differently from [7], the effect of perturbations on the dynamics
(3.1.1) are not yet introduced in the definition of SD-CBF. In Section 3.4,
robustness to input perturbations is further analysed. Now that the notion of
SD-CBF is formally defined , the following theorem is presented in order to
to expand the safety conditions for continuous time HOCBF to sample data
systems

Lemma 3. Consider the control affine system (3.1.1) where the functions
g : Rn × R≥0 → Rn×m and f : Rn × R≥0 → Rn are both continuously
differentiable functions of time t ∈ I ⊂ R≥0 and state x ∈ X ⊂ Rn. Define
a sampling interval Tk := [k∆t, (k + 1)∆t] ⊂ I for some ∆t > 0 such
that (3.1.1) is subject to a constant bounded feedback control input u(t) =

u(x(k∆t), k∆t) ∈ U ∀t ∈ Tk shorthanded as u(x(k∆t)). Furthermore
consider a valid HOCBF h : D × I → R of relative degree r as in
Definition 4 that is at least Cr+1 on x and t, the associated class-K functions
αi∀i = 0, . . . r−2 such that eachαi is at leastCr−i. Also consider the cascade
of safe sets ∩

i=0..r−1
CSi(t) ⊂ D where CSi(t) are defined in (3.2.3), and the

continuous and differentiable HOCBF constraint ζ(x,u, t) : D×U ×I → R
as defined in (3.2.5). Given that at time instant k∆t,x(k∆t) ∈ CS(k∆t) and
that the constant feedback control inputu(x(k∆t)) ∈ U respects the condition

sup
u∈U

ζ(x(k∆t),u(x(k∆t)), k∆t)− L∆t ≥ 0 (3.3.7)

Where L is defined as

L = max
(x,u,t)∈D×U×I

|ζ̇(x,u, t)|

then it holds that

x(k∆t) ∈ ∩
i=0..r−1

CSi(k∆t) ⇒ x(t) ∈ ∩
i=0..r−1

CSi(t) ∀t ∈ Tk (3.3.8)

Proof. The proof is analogous to the the proof of Lemma 2 where the safe set
CS(t) is replaced by ∩

i=0..r−1
CSi(t), the CBF constraint ψ(x,u, t) is replaced

by the HOCBF constraint ζ(x,u, t) and h(x, t) is replaced by Hr−1(x, t). It
is noted that the requirement on the smoothness of the class-K functions αi is
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required so that ζ(x,u, t) is a differentiable function on X × U × I .

The definition of Sample Data High Order Control Barrier Function (SD-
HOCBF) is then introduced similarly to the definition of SD-CBF

Definition 6 (SD-HOCBF). Consider the system (3.1.1) and a continuously
differentiable function h : D × I → R, the associated safe set CS(t) ⊂ D
for all t ≥ 0 as defined in (3.1.2) and consider r to be equal to the relative
degree of h with respect to the dynamics in (3.1.1). The function h is a SD-
HOCBF for a given ∆t > 0 if (1) there exist a set of differentiable extended
class K function αi ∀i ∈ 0..r − 1 as defined in Definition 4 (2) there exists
a set of function Hi∀i = 1, ..r − 1 with the properties defined in Definition
4, (3) for any point x ∈ D and k ∈ N0 there is a constant feedback input
u(x(k∆t), k∆t) ∈ U , shortened to u(k∆t), satisfying the condition:

∂Hr−1(x̃, t)

∂t
+LfHr−1(x̃, t)+

LgHr−1(x̃, t)(u+w) + αr−1(Hr−1(x̃, t)) ≥ L∆t

Where is L is a valid Lipschitz constant as defined in Lemma 3

3.4 Robust SD-CBF and SD-HOCBF
In this section, the notion of SD-CBF and SD-HOCBF is extended to the class
of control affine systems subject to input disturbances. Consider the disturbed
control affine system

˙̃x = f(x̃, t) + g(x̃, t)(u(t) +w(t)) (3.4.1)

Where x̃ ∈ X̃ ⊆ Rn while u ∈ U and t ∈ I ∈ R≥0 are again the control
input and time. Note that X̃ is considered to be a compact and convex as X .
The functions f and g are considered to have the same properties as system
(3.1.1) on the set X̃ . On the other hand, w(t) ∈ W ⊆ Rm is a bounded
unknown input disturbance which is assumed to be piece-wise differentiable
on a compact and convex set W . The symbol ∥w∥+ is applied to denote the
maximum norm of the input disturbance. The CBF constraint under perturbed
dynamics (3.4.1) is denoted as ψ̃(x̃,u,w, t) : D × U ×W × I → R

ψ̃(x̃,u,w, t) :=
∂h(x̃, t)

∂t
+ Lfh(x̃, t) + Lgh(x̃, t)(u+w) + α(h(x̃, t))

(3.4.2)
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On the other hand, the HOCBF constraint under perturbed dynamics
becomes

ζ̃(x̃,u,w, t) :=
∂Hr−1(x̃, t)

∂t
+ LfHr−1(x̃, t)+

LgHr−1(x̃, t)(u+w) + αr−1(Hr−1(x̃, t))
(3.4.3)

Lemma 4. (modified from [7]) Consider the perturbed control affine system
(3.4.1) where the functions g : Rn × R≥0 → Rn×m and f : Rn × R≥0 → Rn

are both continuously differentiable functions of t and x̃ on the set I × X̃ .
Let w(t) ∈ W be a bounded unknown piese-wise differentiable disturbance
defined on the compact set W such that w(t) ≤ ∥w(t)∥+∀t ∈ I . Let
Tk := [k∆t, (k + 1)∆t] ⊂ I be a sampling interval for some ∆t > 0 such
that (3.4.1) is subject to a constant bounded feedback control input u(t) =

u(x̃(k∆t), k∆t) ∈ U ∀t ∈ Tk shorthanded as u(x̃(k∆t). Furthermore
consider a valid CBF h : D × I → R as in Definition 2 that is at least
C2 on D × I and where α is C1. Let CS(t) ⊂ D be the associated safe set as
in (3.1.2) and define the associated piece-wise differentiable CBF constraint
ψ̃ : D × U × W × I → R as in (3.4.2). Given that at time instant k∆t,
x̃(k∆t) ∈ CS(k∆t), x(k∆t) ≜ x̃(k∆t) and that the constant feedback
control input u(x̃(k∆t)) ∈ U respects the condition

sup
u∈U

ψ(x(k∆t),u(k∆t), k∆t)− Lw∆t− c∥w∥+ ≥ 0 (3.4.4)

Where ψ is the CBF constraint under nominal dynamics in (3.1.4), evaluated
at time k∆t, and Lw is defined as

Lw = sup
(x,u,w,t)∈D×U×W×I

| ˙̃ψ(x̃,u,w, t)|

and the constant c is defined as

c = sup
(x̃,t)∈D×I

||Lgh(x̃, t)||

Then it holds that

x̃(∆t) ∈ CS(k∆t) ⇒ x̃(t) ∈ CS(t) ∀t ∈ Tk (3.4.5)

Proof. The proof follows the same arguments applied to derive Lemma 2.
Given a constant feedback input u(x̃(k∆t)) on the interval Tk, it is known
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that both u(x̃(k∆t)) and w are bounded on Tk as U and W are compact.
It is also known that f and g in (3.1.1) are both continuously differentiable
and w(t) is piece-wise differentiable such that the solution x̃(t) to (3.4.1) is
uniquely defined on an interval [k∆t, τ ] for some τ ≤ (k + 1)∆t [[25], Thm.
54]. The CBF constraint on [k∆t, τ ] is then introduced as

ψ̃(x̃,u(x̃(k∆t)),w, t) =
∂h(x̃, t)

∂t
+ Lfh(x̃, t)+

Lgh(x̃, t)(u(x̃(k∆t)) +w(t)) + α(h(x̃, t)) ∀t ∈ [k∆t, τ ]

Now it is noted that ψ̃(x̃(t),u(x̃(k∆t)),w(t), t) is a piece-wise differentiable
function of time as all the functions appearing in the definition of ψ̃

are continuously differentiable apart from w(t), which is only piece-
wise differentiable. Since this function respects the conditions for
Prop 4.1.2 in [28], the Lipschitz constant (see equation (3.3.1)) for
ψ̃(x̃(t),u(x̃(k∆t)),w(t), t) is given by

Lw = sup
(x,u,w,t)∈D×U×W×I

| ˙̃ψ(x̃,u,w, t)|

By direct application of the Lipschitz continuity property (3.3.1), it is possible
to derive the following inequality

|ψ̃(x̃(t2),u(x̃(k∆t)),w(t2), t2)−ψ̃(x̃(t1),u(x̃(k∆t)),w(t1), t1)| ≤
Lw|t2 − t1| ∀t1, t2 ∈ [k∆t, τ0]

and the maximum negative variation of ψ̃ over the interval [k∆t, τ0] becomes

ψ̃(x̃(t2),u(x̃(k∆t)),w(t2), t2)−ψ̃(x̃(t1),u(x̃(k∆t)),w(t1), t1) ≥
− Lw|t2 − t1|∀t1, t2 ∈ [k∆t, τ0]

(3.4.6)

Next the following relation between ψ̃(x̃(k∆t),u(x̃(k∆t)),w(k∆t), k∆t)

andψ(x(k∆t),u(x(k∆t)),w(k∆t), k∆t) is introduced recalling that x̃(k∆t) ≜
x(k∆t).
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ψ̃(x̃(k∆t),u(x̃(k∆t)),w(k∆t), k∆t) =

ψ(x(k∆t),u(x(k∆t)), k∆t) + Lgh(x(k∆t), k∆t)w(k∆t) ≥
ψ(x(k∆t),u(x(k∆t)), k∆t)− sup

(x̃,t)∈D×I
||Lgh(x̃, t)||||w||+ =

ψ(x(k∆t),u(x(k∆t)),w(k∆t), k∆t)− c||w||+

(3.4.7)

The instant t1 is replaced with k∆t, t2 is replaced with t in (3.4.6) and
ψ̃(x̃(k∆t),u(x̃(k∆t)), k∆t) is added on the left and right hand side of (3.4.6)
such that the following condition is derived

ψ̃(x̃(t2),u(x̃(k∆t)),w(t2), t2) ≥ Lw∆t+ ψ̃(x̃(k∆t),u(x̃(k∆t)),w(k∆t), k∆t)

≥ −Lw∆t+ ψ(x(k∆t),u(x(k∆t)),w(k∆t), k∆t)− c||w||+
≥ 0 ∀t2 ∈ [k∆t, τ0]

Where the last inequality is obtained by replacing condition (3.4.4) from the
lemma statement. As both Lw and c are not specific functions of the time
interval considered, the same arguments developed for Lemma 2 are applied
to prove that x̃ ∈ CS(t) ∀t ∈ [k∆t, (k + 1)∆t].

Lemma 4 can be easily extended for SD-HOCBF only in the case the SD-
HOCBF has the same relative degree for both u and w. This is conditions is
formalised as

LgLnfu = 0 ∀n ∈ [0 . . . r − 1] ⇒ LgLnfw = 0 ∀n ∈ [0 . . . r − 1]

Where r is the relative degree of the SD-HOCBF. This is due to the fact
that if the HOCBF has different relative degree for the control input u and
the disturbance w, then it is not possible to prove forward invariance of

∩
i=0..r−1

CSi(t).

Lemma 5. (modified from [7]) Consider the perturbed control affine system
(3.4.1) where the functions g : Rn × R≥0 → Rn×m and f : Rn × R≥0 → Rn

are both continuously differentiable functions of t and x̃ on the set I × X̃ .
Let w(t) ∈ W be a bounded unknown piese-wise differentiable disturbance
defined on the compact set W such that w(t) ≤ ∥w(t)∥+∀t ∈ I . Let
Tk := [k∆t, (k + 1)∆t] ⊂ I be a sampling interval for some ∆t > 0 such
that (3.4.1) is subject to a constant bounded feedback control input u(t) =
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u(x̃(k∆t), k∆t) ∈ U ∀t ∈ Tk shorthanded as u(x̃(k∆t). Furthermore
consider a valid HOCBF h : D × I → R of relative degree r as in Definition
2 that is at least Cr+1 on D × I and where αi is C(r−1)−i ∀i = 0, . . . r − 2.
Let ∩

i=0..r−1
CSi(t) ⊂ D be the associated safe set where CSi(t) are defined

as in (3.2.3). Let the associated piece-wise differentiable HOCBF constraint
ζ̃ : D × U × W × I → R as in (3.4.3). Given that at time instant k∆t,
x̃(k∆t) ∈ ∩

i=0..r−1
CSi(t), x(k∆t) ≜ x̃(k∆t) and that the constant feedback

control input u(x̃(k∆t)) ∈ U respects the condition

sup
u∈U

ζ(x(k∆t),u(k∆t), k∆t)− Lw∆t− c∥w∥+ ≥ 0 (3.4.8)

Where ζ is the HOCBF constraint under nominal dynamics in (3.2.5),
evaluated at time k∆t, and Lw is defined as

Lw = sup
(x,u,w,t)∈D×U×W×I

| ˙̃ζ(x̃,u,w, t)|

and the constant c is defined as

c = sup
(x̃,t)∈D×I

||LgLr−1
f h(x̃, t)||

Then it holds that

x̃(k∆t) ∈ ∩
i=0..r−1

CSi(k∆t) ⇒ x̃(t) ∈ ∩
i=0..r−1

CSi(t) ∀t ∈ Tk (3.4.9)

Proof. The proof is again analogous to the the proof of Lemma 2 where the
safe set CS(t) is replaced by ∩

i=0..r−1
CSi(t) and the CBF constraint ψ is replaced

by the HOCBF constraint ζ .
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Chapter 4

Inspection mission

4.1 Problem Definition
In this Chapter, the theoretical background developed so far will be applied to
the spacecraft formation flight problem. It is desired to maintain a formation
of CubeSats (denoted as the inspectors from now on) in passive relative orbit
(PRO) around the ISS in order to inspect the outer structure of the station
while ensuring safety of the formation at all the times. Each agent has the
task to track its reference PRO by sparse activation of a sample data MPC
controller while maintaining a minimum safe distance from the reference. The
driving reason why the agents are set to track PROs stems from the need of
minimising the fuel consumption during the mission. In the present work,
the PROs design is based on the linearised CW model dynamics (Section
2.2.4). As the ISS orbit is nearly circular (see Table 4.1), the designed PROs
are close to be physically stable orbits under zero actuation dynamics. The
effects of differential aerodynamic drag and differential zonal harmonic terms
cause the inspectors to continuously drift from their reference PROs if periodic
correction maneuvers are not undertaken. For this reason an independent
MPC controller for each inspector is triggered sparsely during the mission
to reset the inspectors on their respective orbits while ensuring safety through
the implementation of CBF constraints. A continuous thrust strategy could
be applied to perfectly maintain each inspector on its PRO by continuous
compensation of the orbital perturbations and linearization errors. Although,
it is assumed that each inspector has a limited power distribution capability as
well as a payload composed of high resolution cameras applied to undertake
the inspection of the outer structure of the ISS. Hence, the effect of continuous
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(a) Example of a set of reference PRO
geometries for an inspection mission of
the International Space Station. The green
dot indicates the starting position of each
inspector

(b) Graphical representation of the inspec-
tion mission with three inspectors. The
blue cone indicates the camera cone of
view pointing on the ISS structure for the
inspection.

actuation could be detrimental for the inspection mission presented as the
propulsion system would have a negative effect on the inspectors’ payload
applied to undertake the inspection. The Chapter is divided as follows: first
the nominal and disturbed dynamics of the inspector are recalled from the
previous sections. Next, a notion of safety is formalised for the given mission
and suitable continuous time and sample data CBF constraints are derived.
Eventually the derived CBF constraints are formalised inside the MPC optimal
control problem formulation.

mean altitude [km] e i [deg] a [km] T [min] ωw [rad/s]

417 0.0004751 51.64 6795 92.97 1.126× 10−3

Table 4.1: ISS main orbital parameters (these parameters are subject to small
daily variations )

4.2 Preliminaries
Each inspector is the equivalent of a deputy as defined in Section 2.2 while
the ISS is the equivalent to the chief spacecraft. The nominal unperturbed
nonlinear continuous dynamics governing the motions of each inspector is
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recalled here for fast reference

δẋ = f(δx, t) + g(δx, t)u(t)

g(δx, t) =

[
O3x3

I3x3

]
f(δx, t) =

[
δv

δr̈g + δafc

]
=

[
δv

fv

] (4.2.1)

Note that in this case the deputy dynamics is written as a function of time and
not as a function of the implicit orbital elements vector b. This is possible as
the implicit orbital elements dynamics (2.2.4) could be integrated over time
independently of the deputy state such that f and g could be rewritten as a
function of time without loss of generality. Due to the effect of the differential
orbital perturbation vector δd(t), the perturbed state dynamics δ ˙̃x is given
as

δ ˙̃x = f(δx̃, t) + g(δx̃, t)(u+ δd(t))

Given the time varying reference PRO state δxr(t) that it is desired to track
over time, the nominal and perturbed state errors are defined as eδx = δx −
δxr(t) and ẽδx = δx̃− δxr(t) respectively.

Through out the section, the notation ∥x∥+ will be denote to indicate the
maximum norm of a vector x on its domain.

4.3 Safety and HOCBF constraint definition
For the inspection mission of the ISS, the state of each inspector is defined safe
if the relative position of each inspector has a distance not grater that ϵδr from
the reference relative position defined by the assigned PRO. It is recalled from
Section 2.2 that a PRO is a bounded periodic relative orbit around the ISS.
Based on this notion of safety a suitable candidate CBF constraint is given
by

hδr(δx, t) = ϵ2δr − ∥δr − δrr(t)∥2 (4.3.1)

Where δr denotes the relative position of the inspector with respect to the
ISS and δrr(t) denotes the reference position along the PRO which is only a
function of time (see Section 2.2.4 ). The constant ϵδr defines the radius of
a ball around the reference δrr where the inspector is considered safe. The
domain set X for the inspector relative state can be simply considered as a
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Cδr(t0)

Cδr(t1)

Cδr(t2)
Cδr(t3)

δrr(t)

ϵδr

X

Figure 4.2: Schematic representation of the safe set Cδr(t) for four different
reference times. The dashed line represents a 2D PRO which is the reference
trajectory to track over time (δrr(t)). The radius of each safe set is indicated
by the parameter ϵδr

convex set such that

X = {δx ∈ R6 : ∥δxr∥ ≤ k∥δxr∥+}

Where k is a non-negative constant and ∥δxr∥+ is the maximum state reference
norm along the PRO (which is known to exist as the PRO is a bounded periodic
reference). The constant k is chosen based on the value of ϵδr, so that the safe
set for h(δx, t) is always a strict subset of X . The domain of definition of
h(δx, t), D, is considered to be X without loss of generality. Taking the total
time derivative of h(δx, t) leads to

ḣδr(δx, t) = −2(δr(δx, t)− δrr(t))
T (δv(δx, t)− δvr(t)) (4.3.2)

where

∂hδr(δx, t)

∂t
= −2(δr(δx, t)− δrr(t))

T δvr(t)

Lfhδr(δx, t) = −2(δr(δx, t)− δrr(t))
T δv(δx, t)

Lghδr(δx, t) = 0

(4.3.3)

The control u(t) is not directly present in equation (4.3.2) as Lghδr(δx, t)

is zero. As a consequence, hδr(δx, t) is an HOCBF for system (4.2.1). The
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second total time derivative for hδr(δx, t) under nominal dynamics is then
derived as follows

ḧδr(δx, t) = −2(δv(δx, t)− δvr(t))
T (δv(δx, t)− δvr(t))−

2(δr(δx, t)− δrr(t))
T (fv(δx, t) + u(t)− δar(t))

(4.3.4)

Where the relative acceleration δa(δx, t) is replaced with its definition from
equation (4.2.1). The decomposition of equation (4.3.4) into its Lie and
partial time derivatives is considered unnecessary complex to be presented.
Although, it is pointed out that the Lie derivative of ḣδr along g(δx, t) is given
by

LgLfhδr = −2eTδr (4.3.5)

For convenience the reference acceleration δar is set to zero while the position
and velocity tracking errors eδv(δx, t), eδr(δx, t) are introduced as

eδv(δx, t) = δv(δx, t)− δvr(t)

eδr(δx, t) = δr(δx, t)− δrr(t)

The HOCBF and its time derivatives are then summarised as

hδr(δx, t) = ϵ2δr − ∥eδr(δx, t)∥2

ḣδr(δx, t) = −2eδr(δx, t)
Teδv(δx, t)

ḧδr(δx, t) = −2eδv(δx, t)
Teδv(δx, t)

− 2eδr(δx, t)
T (fv(δx, t) + u(t))

(4.3.6)

Since the control u(t) directly appears at the second derivative of hδr(δx, t),
the defined HOCBF is of relative degree 2 for the system (4.2.1). Developing
a cascade of barrier functions as in equation (3.2.2) and assuming that all the
class K-functions α(·) are polynomial functions in the form αn(x) = pnx

an

with an ≥ 0 being a general exponent (note this class of functions respect
the smoothness conditions introduced in Section 3), the following cascade of
CBFs is derived

H0(δx, t) = hδr(δx, t)

H1(δx, t) = ḣδr(δx, t) + p0(hδr(δx, t))
a0

(4.3.7)

and the general HOCBF constraint is derived as follows

ζ(δx,u, t) = ḧδr + a0 p0 ḣδrh
a0−1
δr + p1 (p0 h

a0
δr + ḣδr)

a1 (4.3.8)
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where the dependence from the state and time was dropped for convenience.
In order to limit the complexity of the derivations we will only consider linear
alpha functions in the form αn(x) = pnx such that the following definitionHi

are derived
H0(δx, t) = hδr(δx, t)

H1(δx, t) = ḣδr(δx, t) + pδr0hδr(δx, t)
(4.3.9)

The consequences of this simplification will be analysed in the conclusion
of the work with reference to the remarks highlighted in [23] regarding the
application of high order polynomials alpha functions instead of simple linear
functions as it is the case for the current work. The safe sets forH0 andH1 are
defined as :

C0(t) = {δx ∈ X : H0(δx, t) ≥ 0}
C1(t) = {δx ∈ X : H1(δx, t) ≥ 0}

(4.3.10)

And the global safe set is given as

Cδr(t) := C1(t) ∩ C0(t)

The condition for the system to be in C0(t) is simply to be inside the ball defined
by equation (4.3.1). On the other hand, the condition for the system to be in
C1(t) is less evident. Namely, the function ḣδr + pδr0hδr is positive in the
following two situations : (1) the velocity error eδv has a negative projection
along the position error eδr, which intuitively corresponds to the inspector
moving toward the reference (2) the projection of eδv along eδr is positive but
the value of eTδveδr is smaller than pδr0h(δx, t).

Now that a HOCBF is defined together with the safe set Cδr(t), the HOCBF
constraint is defined as

ζδr(δx,u, t) = Ḣ1(δx, t) + pδr1H1(δx, t) (4.3.11)

Replacing the relations in equation (4.3.9) and (4.3.6) in equation (4.3.11) the
HOCBF constraint becomes

ζδr(δx,u, t) =− 2∥eδv∥2 − 2eTδr(fv(δx, t) + u(t))

− 2(pδr0 + pδr1)(e
T
δreδv) + pδr0pδr1(ϵ

2
δr − ∥eδr∥2)

(4.3.12)
It is desired to study the feasibility of the condition ζδr(δx,u, t) ≥ 0 for any
given state condition within the set Cδr(t) as this condition must be ensured in
order to maintain the system inside the safe set (see Lemma 1). The control
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set U is first defined

Definition 7. The available control set U for the dynamics system in (4.2.1) is
a compact set defined as

U = {u ∈ R3 : ∥u∥ ≤ ∥u∥+}

where ∥u∥+ denoted the maximum available control norm.

The following proposition is then given

Proposition 1. Given the HOCBF constraint defined in equation (4.3.12), the
associated safe set Cδr(t) and the feasible control input set U as in Definition
7, it holds that

max
u∈U

ζδr(δx,u, t) = ∥u∥+ − βδr(δx, t) ∀δx ∈ Cδr(t) (4.3.13)

where

βδr(δx, t) =
1

∥eδr∥
(
∥eδv∥2 + eTδrfv + (pδr0 + pδr1)(e

T
δreδv)

−pδr0pδr1
2

(ϵ2δr − ∥eδr∥2)
(4.3.14)

Proof. The value of the inner product eTδru is bounded by applying the inner
product inequality

−∥eδr∥∥u∥ ≤ eTδru ≤ ∥eδr∥∥u∥ (4.3.15)

Considering that inside the set U the relation ∥u∥ ≤ ∥u∥+ holds, then the
inner product eTδru is further bounded as

−∥eδr∥∥u∥+ ≤ eTδru ≤ ∥eδr∥∥u∥+ (4.3.16)

Hence the HOCBF constraint ζδr is always maximised with respect to the
control input u for any possible state in Cδr(t) as

max
u∈U

ζδr(δx,u, t) = −2∥eδv∥2 − 2eTδrfv + 2∥eδr∥∥u∥+

− 2(pδr0 + pδr1)(e
T
δreδv) + pδr0pδr1(ϵ

2
δr − ∥eδr∥2) ≥ 0

(4.3.17)

Isolating ∥u∥+ in (4.3.17) yields then the result of the proposition
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From the result of Proposition 1, a minimum maximum control magnitude
∥u∥+ such that the condition ζδr(δx,u, t) ≥ 0 is always satisfied for any
possible state condition is found by maximising the function βδr(δx, t) for the
state and time. Considering the system state to be inside safe set Cδr(t), an
upper bound on βδr(δx, t) is developed as

βδr(δx, t) ≤
1

∥eδr∥

(
∥eδv∥2 + ∥eδr∥ϵf + (pδr0 + pδr1)(e

T
δreδv)+ − pδr0pδr1

2
(ϵ2δr − ∥eδr∥2)

)
=

1

∥eδr∥

(
ϵ2δv + ∥eδr∥ϵf + (pδr0 + pδr1)

pδr0
2

(ϵ2δr − ∥eδr∥2)−
pδr0pδr1

2
(ϵ2δr − ∥eδr∥2)

)
=

1

∥eδr∥

(
ϵ2δv + ∥eδr∥(ϵf ) +

(
(pδr0 + pδr1)

pδr0
2

− pδr0pδr1
2

)
(ϵ2δr − ∥eδr∥2)

)
=

ϵ2δv
∥eδr∥

+ ϵf +
p2δr0
2

(ϵ2δr − ∥eδr∥2)
∥eδr∥

= β̄δr

(4.3.18)
Where the variables ϵf and ϵδv are defined as follows

max
(δx,t)∈X×R≥0

∥eδv∥ = ∥eδv∥+ = ϵδv

max
(δx,t)∈X×R≥0

∥fv∥ = ∥fv∥+ = ϵf
(4.3.19)

While ϵf can be obtained analytically (Appendix A.3), the upper bound ϵδv
must be enforced from the satisfaction of a second barrier constraint on the
velocity error (which is developed in the next section). If it is not possible to
bound ∥eδv∥, then it is not possible to give any guarantee about the satisfaction
of the HOCBF constraint. Note that this conclusion is not dependant from the
particular choice of the linear α functions inside the HOCBF definition due to
the fact the the second time derivative of hδr will eventually appear as evident
form equation (4.3.8). At last, the maximum of the inner product eTδreδv was
bounded within the safe set C1 ⊃ Cδr as

H1 ≥ 0 ⇒ −2eTδreδv + α0(h(x, t)) ≥ 0

⇒ (eTδreδv) ≤
α0(h(x, t))

2
=
pδr0
2

(ϵ2δr − ∥eδr∥2)
(4.3.20)

From the definition of β̄δr the maximum control norm tends to infinity as the
position error norm tends to zero. This problem derives from the fact that
LgLfh(x, t) is singular at the origin. If the available control is limited (as it
is the case in every real application), the satisfaction of the HOCBF constraint
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can only be strictly ensured in a restricted safe set C̃δr(t) ⊂ Cδr(t) defined
as

C̃δr(t) = {δx ∈ Cδr(t) : ds ≤ ∥eδr∥ ≤ ϵδr}

On the other hand, inside the set Cδr(t)\C̃δr(t) the satisfaction of the HOCBF
constraint can only be assumed under an appropriate feedback law. The higher
is the control authority and the smaller will be the minimum value of ds
such that ζδr(δx,u, t) ≥ 0 is ensured for every state condition in C̃δr(t). A
second relevant issue needs to be solved before moving further. Namely, the
maximum speed error norm ϵδv has to be bounded inside Cδr(t) in order to
provide any guarantee on the HOCBF constraint satisfaction. In the present
work it is considered that the maximum relative speed error bound ϵδv is
enforced to be equal to

ϵδv ≤ pδr0
2

(ϵ2δr − d2s)

ds
(4.3.21)

which is the maximum outward radial speed component allowed inside C1(t)

dsϵδr

C̃δr(t)
Cδr

Cδr\C̃δr

Figure 4.3: Schematic representation of the sets C̃δr,Cδr and Cδr\C̃δr. The
black arrows indicate the maximum radial component of the speed error eδv as
allowed inside Cδr. The dashed lines are applied to indicate the inner distance
ds and the outer safe set limit ϵδr

when ∥eδr∥ = ds. This value lower bounds the maximum outward radial
speed inside Cδr(t)\C̃δr(t), and upper bounds the maximum allowed radial
speed in C̃δr(t) as evident from equation (4.3.20). Replacing ds and Definition
(4.3.21) for the maximum relative speed upper bound ϵδv in equation (4.3.18),
leads to a closed form analytical solution for the maximum control required to
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satisfy the HOCBF constraint inside C̃δr(t)

∥u∥+ ≥ p2δr0
4

(ϵ2δr − d2s)
2

d3s
+ ϵf +

p2δr0
2

(ϵ2δr − d2s)

ds
(4.3.22)

It is instead not possible to prove analytically that such control authority is
sufficient to satisfy the HOCBF constarint inside Cδr(t)\C̃δr(t) as subject to
the defined upper limit in the speed error magnitude defined in (4.3.21)

4.4 Velocity CBF
In the previous subsection it was assumed that a maximum value for the norm
of the relative velocity error exist as ϵδv. In order to impose such upper bound
on the maximum relative velocity error norm, a second barrier function is
introduced as

hδv(δx, t) = ϵ2δv − ∥δv − δvr(t)∥2 (4.4.1)

Replacing δv − δvr(t) with eδv and taking the time derivative of hδv(δx, t)
with respect to time leads to

ḣδv(δx, t) = −2eTδv(fv + u) (4.4.2)

Since the control u appears in the first time derivative of hδv(δx, t), then
hδv(δx, t) is of relative degree one for the system (4.2.1) with Lghδv(δx, t)

defined as
Lghδv(δx, t) = −2eTδv

And a valid CBF constraint is directly imposed as

ψδv(δx,u, t) := ḣv(δx, t) + pδv0(hδv(δx, t))

=− 2eTδv(fv(δx, t) + u(t)) + pδv0(ϵ
2
δv − ∥eδv(δx, t)∥2) ≥ 0

(4.4.3)
The safe set for the velocity CBF is simply defined by

Cδv(t) = {δx ∈ X : hδv(δx, t) ≥ 0} (4.4.4)

Similarly to Proposition 1, the following proposition is given to analytically
derive a lower bound and the minimum control authority required to satisfy
the velocity CBF constraint

Proposition 2. Given the CBF constraint defined in equation (4.4.3), the
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associated safe set Cδv(t) from (4.4.4) and the feasible control input set U
as in Definition 7, it holds that

max
u∈U

ψδv(δx,u, t) = ∥u∥+ − βδv(δx, t) (4.4.5)

where
βδv(δx, t) =

eTδvfv
∥eδv∥

− pδr0
(ϵ2δv − ∥eδv∥2)

2∥eδv∥
(4.4.6)

Proof. The value of the inner product eTδvu is bounded as

−∥eδv∥∥u∥ ≤ eTδvu ≤ ∥eδv∥∥u∥ (4.4.7)

Considering that inside U the relation ∥u∥ ≤ ∥u∥+ holds, then the inner
product eTδvu is further bounded as

−∥eδv∥∥u∥+ ≤ eTδvu ≤ ∥eδv∥∥u∥+ (4.4.8)

Replacing this last inequality in the definition of ψδv(δx,u, t) gives the result
of the proposition

Applying Proposition 2 it is possible to derive a lower bound on the maximum
control authority ∥u∥+ as function of the state such that the CBF condition
ψδv(δx,u, t) ≥ 0 is respected as

∥u∥+ ≥ βδv(δx, t) = −pδv0
(ϵ2δv − ∥eδv∥2)

2∥eδv∥
+

1

∥eδv∥
eTδvfv (4.4.9)

In order to find a minimum maximum control magnitude ∥u∥+ such that the
condition ψδv(δx,u, t) ≥ 0 is always satisfied, the lower bound βδv(δx, t)
is maximised for the state and time, considering that the system is inside the
safe set Cδv(t). Applying the Cauchy-Schwarz inequality on the term eTδvf ,
the function βδv(δx, t) is upper bounded as

β(δx, t) ≤ −pδr0
(ϵ2δv − ∥eδv∥2)

2∥eδv∥
+ ϵf (4.4.10)

And eventually the maximum minimum control input required to satisfy the
CBF constraint is obtained by noting that the RHS in equation (4.4.10) is
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maximised within the safe set Cδv by the condition ∥eδv∥ = ϵδv such that

∥u∥+ ≥ ϵf (4.4.11)

This subsection is concluded noting that for the first order barrier function
hδv the minimum maximum control authority is only given by the maximum
dynamic acceleration which is a much simpler result than the one obtained for
the HOCBF.

4.5 From continuous to sample data
As developed in Section 3.3, a suitable margin should be defined for the
position and velocity barrier constraints so that safety is not only ensured at the
time steps k∆t, but also in between the time intervals Tk = [k∆t, (k+1)∆t].
Namely, the constants Lw and c appearing in Lemma 4 and 5 are to be defined
for the position HOCBF constraint and the velocity CBF constraints under
perturbed dynamics. For clarity, Lδr and cδr will be applied to define the
constants Lw and c from Lemma 4 and 5 for the position HOCBF constraint,
while Lδv and cδv are applied for the velocity CBF constraint.

4.5.1 Robust position SD-HOCBF
The HOCBF constraint under perturbed dynamics ζ̃δr(δx̃, t) is defined
as

ζ̃δr(δx̃,u, δd, t) :=− 2∥ẽδv∥2 − 2ẽTδr(fv + δd) + 2∥ẽδr∥∥u∥+
− 2(pδr0 + pδr1)(ẽ

T
δrẽδv) + pδr0pδr1(ϵ

2
δr − ∥ẽδr∥2)

and its time derivative is given as

˙̃ζδr(δx̃,u, δd, t) = −6ẽTδv(fv + u+ δd)− 2ẽTδr(
dfv
dt

+
dδd
dt

)

−2(pδr0 + pδr1)(ẽ
T
δvẽδv + ẽTδr(fv + u+ δd))− pδr0pδr1(2ẽ

T
δvẽδr)

(4.5.1)
Where δd ∈ W is the orbital perturbations vector. It is noted that du

dt =

0 ∀t ∈ Tk applying the Zero-Order Hold control scheme. The constraint ζ̃δr
is a piece-wise differentiable function of time (as all the functions appearing in
its definition are at least piece-wise differentiable). A valid Lipschitz constant
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ISS

δrr(t)

ϵδr Cδr(t)

X

Figure 4.4: 3D representation of the safe Cδr set compared to the set X .

Lδr for ˙̃ζδr is then given by Lemma 5 as

Lδr = sup
(δx,u,δd,t)∈X×U×W×R≥0

| ˙̃ζδr(δx,u, δd, t)|

A critical issue arise as upper boundingLδr overX is excessively conservative
for the current mission scenario as Cδr(t) is only a small subset of X . Indeed,
the safe set is a moving sphere of a few meters in diameter, while the set X
is commonly a sphere with a diameter that is roughly one order of magnitude
higher in diameter (See Figure 4.4 for example). This problem is solved by
finding a set that minimally upper bounds the safe set Cδr. Given that each
inspector has a finite maximum acceleration, and that the state is started from
within Cδr, it is possible to find a set Sδr(∥u∥,∆t, t) that contains all the
possible states of the system at time step k(∆t + 1). This set will be defined
shortly. First, it is noted that inside the safe set, a valid Lipschitz constant
Lδr for ˙̃ζδr(δx,u, δd, t) can be obtained by direct application of the Cauchy-
Schwarz inequality over all the dot products present in the analytical form of
˙̃ζδr and assuming all vectors have their maximum norm

Lδr(∥u∥+,∆t) = 6ϵδv(ϵf + ϵd + ∥u∥+) + 2ϵδr

(
∥dfv

dt
∥+ + ∥dδd

dt
∥+

)
+

2(pδr0 + pδr1)(ϵ
2
δv + ϵδr(ϵf + ϵd + ∥u∥+)) + 2pδr0pδr1(ϵδvϵδr)

(4.5.2)
Where term ∥dfv

dt ∥+ is the maximum norm of the total time derivative of fv and
it is a complex function of the maximum control input ∥u∥+ and the desired
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PRO geometry, while ϵd is the defined as

ϵd = max
δd∈W

∥δd∥ = ∥δd∥+

In Appendix A.4 a full analytical first order approximation for ∥dfv

dt ∥+ is
developed for circular orbits only (which is the case for the ISS orbit). Given
the approximately constant angular velocity ωw for the ISS orbit, the definition
of ∥dfv

dt ∥+ from Appendix A.4 is

∥dfv
dt

∥+ =∥δ ...
r g∥+ + 3ωwϵf + 3ω2

w∥δv∥+ + ω3
w∥δr∥+ + ∥δḋ∥+ + 3ωw∥u∥+

= qq + 3ωw(ϵf + ∥u∥+ + ϵd)
(4.5.3)

Where the term qq is defined as

qq = ∥ ...
r g∥+ + 3ω2

w∥δv∥+ + ∥δḋ∥+ + ω3
w∥δr∥+ (4.5.4)

The upper bounds ∥δv∥+ and ∥δr∥+ are the maximum absolute relative
distance and the maximum relative velocity of the inspector relative to the
ISS. Both these parameters could be approximated as

∥δv∥+ ≈ ∥δvr∥+
∥δr∥+ ≈ ∥δrr∥+

where ∥δvr∥+ and ∥δrr∥+ are computed from the analytical definition of the
reference PRO (Section 2.2.4). This approximation is valid for relatively small
velocity and position errors compared to the reference trajectory. From the
nominal maximum velocity error ϵδv and maximum nominal position error
ϵδv, it is possible to define a set Sδr(∥u∥,∆t, t) ⊃ Cδr(t) such that

Sδr(∥u∥,∆t, t) = {δx ∈ X : ∥ẽδr∥ ≤ ϵ̃δr(∆t, ∥u∥+)∧∥ẽδv∥ ≤ ϵ̃δv(∆t, ∥u∥+)}

Where

ϵ̃δr(∆t, ∥u∥+) = ϵδr + (ϵf + ϵd + ∥u∥+)
∆t2

2
+ ϵδv∆t

ϵ̃δv(∆t, ∥u∥+) = ϵδv + (ϵf + ϵd + ∥u∥+)∆t
(4.5.5)

Informally, Sδr(∥u∥,∆t, t) represents the set that minimally upper bounds
Cδr(t) under worse case scenario acceleration. Indeed, given that at time k∆t
the system is started at the condition eδr = ϵδr and eδv = ϵδv, the maximum
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ϵ̃δrϵδr

Cδr(t0)

Sδr(∥u∥+,∆t, t0)

ϵ̃δrϵδr

Cδr(t1)

Sδr(∥u∥+,∆t, t1)

ϵ̃δrϵδr

Cδr(t2)

Sδr(∥u∥+,∆t, t2)

δrr(t)
X

Figure 4.5: Graphical representation of the set Sδr(∥u∥,∆t, t) for three
different time steps. In green is the set Sδr(∥u∥,∆t, t) and in light blue is the
safe set Cδr(t). The size of the set Sδr(∥u∥,∆t, t) depends upon the defined
maximum input control and maximum time step. Increasing ∥u∥+ or ∆t has
the effect of increasing the size of Sδr(∥u∥,∆t, t) compared to Cδr(t)

velocity and position error variations for a given maximum constant control
input norm ∥u∥+ and a given time interval ∆t are upper bounded on the
interval Tk = [k∆t, (k + 1∆t)] as

∥ẽδv(t)− ẽδv(k∆t)∥ ≤ (ϵf + ϵd + ∥u∥+)∆t ∀t ∈ Tk

∥ẽdr(t)− ẽdr(k∆t)∥ ≤ (ϵf + ϵd + ∥u∥+)
∆t2

2
+ ϵδv∆t ∀t ∈ Tk

(4.5.6)

Hence, inside the set Sδr(∆t, ∥u∥+, t) a valid Lipschitz constant Lδr is given
by

Lδr(∥u∥+,∆t) ≤6ϵ̃δv(ϵf + ϵd + ∥u∥+) + 2ϵ̃δr

(
∥dfv

dt
∥+

)
+

2(pδr0 + pδr1)(ϵ̃
2
δv + ϵ̃δr(ϵf + ϵd + ∥u∥+))+

2pδr0pδr1(ϵ̃δv ϵ̃δr)

(4.5.7)

It is noted that Lδr(∥u∥+,∆t) is only a valid Lipschitz constant on the
set Sδr(∥u∥+,∆t, t) and not a globally valid Lipschitz constant over the
full domain X . Finding a globally valid Lipschitz constant is considered
impractical as it would require extremely high control authorities to satisfy
the CBF and HOCBF constraints. Regarding the constant cδr from Lemma
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5 (identified as c in the Lemma statement), the same issue arises as upper
bounding cδr over the full set X would be overly conservative. For this reason,
a maximum value for cδr is only found for the set Sδr(∆t, ∥u∥+, t) as

cδr = 2ϵ̃δr

The continuous time HOCBF constraint ζδr is then modified according to
Lemma 5, in order to obtain a valid robust SD-HOCBF constraint as

ζδr(x(k∆t),u(k∆t), k∆t)− cδrϵd − Lδr(∥u∥+,∆t)∆t ≥ 0

The pair of maximum control afford and time steps, (∥u∥+,∆t), for which
it is possible to respect the SD-HOCBF constraint ζδr − cδrϵd − Lδr∆t ≥ 0

is then found on the semi-half space ϕδr(∥u∥+,∆t) defined by the condition
ϕδr(∥u∥+,∆t) ≥ 0 where ϕδr is defined as

ϕδr(∥u∥+,∆t) = ∥u∥+ − β̄δr − cδrϵd − Lδr(∥u∥+,∆t)∆t (4.5.8)

4.5.2 Robust velocity SD-CBF
Similarly to the previous subsection, the perturbed CBF constraint ψ̃δv(δx̃,u, δd, t)
is defined as

ψ̃δv(δx̃,u, δd, t) := −2ẽTδv(fv + u+ δd) + pδv0(ϵ
2
δv − ∥ẽδv∥2) (4.5.9)

and its first time derivative is given by

˙̃ψδv(δx̃,u, δd, t) = −2ẽTδv

(
dfv
dt

+
dδd
dt

)
− 2∥fv + u+ δd∥2+

pδv0(−2ẽTv (fv + u+ δd))

(4.5.10)

By the same arguments developed for the SD-HOCBF, a setSδv(∥u∥+,∆t, t) ⊃
Cδv(t) is defined such that

Sδv(∥u∥+,∆t, t) := {δx ∈ X : ∥ẽδv∥ ≤ ϵ̃δv}

Where the definition of ϵ̃δv is given in equation (4.5.5). Hence inside Sδv a
valid Lipschitz constant for ψ̃(δx̃,u, t) in equation (4.5.10) is obtained again
by applying the Cauchy–Schwarz inequality and by setting all the vectors to
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their maximum norm inside Sδv

Lδv(∥u∥+,∆t) = 2ϵ̃δv

(
∥dfv

dt
∥+ + ∥dδd

dt
∥+

)
+ 2(ϵf + ∥u∥+ + ϵd)

2+

pδv0(2ϵ̃δv(ϵf + ∥u∥+ + ϵd))
(4.5.11)

and a suitable constant cδv is given from Lemma 4 as

cδv = 2ϵ̃δv

The continuous time CBF constraint ψδv is then modified in order to obtain a
valid robust SD-CBF constraint as

ψδv(x(k∆t),u(k∆t), k∆t)− Lδv(∥u∥+,∆t)∆t− cδvϵd ≥ 0

As already developed in the case of the SD-HOCBF, the space of minimum
maximum control authorities and time steps for which it is possible to respect
the SD-CBF constraint is found on the semi-half space ϕδv(∥u∥+,∆t) ≥ 0

where ϕδv(∥u∥+,∆t) is defined by

ϕδv(∥u∥+,∆t) = ∥u∥+ − β̄δv − cδvϵd − Lδv(∥u∥+,∆t)∆t (4.5.12)

4.5.3 Zero-actuation Lipschitz constants
In addition to the constants Lδr and Lδv developed in the previous section, it
is relevant to define two new constants Lzδr and Lzδv as

Lzδr = Lδr(0,∆t)

Lzδv = Lδv(0,∆t)
(4.5.13)

Where Lzδv and Lzδr are defined as

Lzδr = 6ϵ̃δvϵf+2ϵ̃δr

(
∥dfv

dt
∥+ + ∥dδd

dt
∥+

)
+

2(pδr0 + pδr1)(ϵ̃
2
δv + ϵ̃δr(ϵf + ϵd) + 2pδr0pδr1(ϵ̃δv ϵ̃δr)

Lzδv = 2ϵ̃δv

(
∥dfv

dt
∥+ + ∥dδd

dt
∥+

)
+

2(ϵf + ϵd)
2 + 2pδv0(ϵ̃δv(ϵf + ϵd))

(4.5.14)
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Note that the values of ϵ̃δv and ϵ̃δr in this case are given as in equation
(4.5.5) considering ∥u∥+ = 0. Moreover, the following short hand notation
is applied to denote the nominal HOCBF and CBF constraints under zero
actuation.

ζzδr(δx, t) = ζδr(δx,0, t)

ψzδv(δx, t) = ψδv(δx,0, t)

In the next section it will be clear how these definitions will become useful for
triggering activation of the MPC controller.

4.6 MPC Control Scheme
In the previous subsections, an analytical form for the position SD-HOCBF
constraints and the velocity SD-CBF were appropriately defined. In the
present subsection, the analytical MPC control scheme is developed based on
the definition of these constraints. Three major issues are highlighted

1. While the SD-CBF constraint and the SD-HOCBF constraint could
be independently satisfied, it is possible that there are certain state
conditions inside Cδr∩Cδv for which there is no feasible control solution
that satisfies both constraints.

2. It is necessary to define a triggering conditions such that the MPC
controller is activated sparsely and such that the activation always occurs
while the systems is still inside the safe set

3. The determination of the parameters pδr0,pδr1, pδv0 and ds represent a
hard design problem as there is no analytical procedure that yields a
direct solution for these parameters.

Concerning the first issue, a solution similar to [8] is applied. Namely, the safe
set Cδr ∩ Cδv is uniformly discretised and the following convex optimization
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problem is solved

min
t,u

− tT t (4.6.1a)

It ≥ 0 (4.6.1b)
∥u∥2 ≤ ∥u∥2+ (4.6.1c)

−2∥eδv∥2 − 2∥eδr∥ϵf + 2eTδru− 2(pδr0 + pδr1)(e
T
δreδv)+

pδr0pδr1(ϵ
2
δr − ∥eδr∥2)− (Lδr∆t− cδrϵd)− t1 ≥ 0

(4.6.1d)

−2∥eδv∥ϵf − 2eTδvu(t) + pδv0(ϵ
2
δv − ∥eδv∥2)− Lδv∆t+ cδvϵd − t2 ≥ 0

(4.6.1e)
(4.6.1f)

Where t = [t1, t2] is simply a dummy vector constrained to have only
positive values from constraint (4.6.1b)(the symbol I is applied to denote
the identity matrix). Constraint (4.6.1d) and (4.6.1e) are worst case scenario
modification of the SD-HOCBF and SD-CBF constraints respectively for
which it is assumed that the dynamic acceleration of the system is always
directioned to maximally decrease the value of the SD-CBF and SF-HOCBF
constraints. If a feasible solution to problem (4.6.1) is found over a sufficiently
dense discretization of the set Cδr∩Cδv, it is then considered possible to satisfy
both the SD-HOCBF and SD-CBF constraints over the continuous set of safe
states. Regarding the trigger condition, it is recalled again that each inspector
is not continuously actuated. The controller should only be actuated when the
state of the inspector is sufficiently close to the border of the safe set Cδr ∩Cδv
while the inspector is left free to follow it reference PRO until the state reaches
the border of the safe set again. The following two conditions are defined in
order to trigger the activation of the MPC controller when the inspectors are
not actuated.

ζδr(δx,0, k∆t) ≤ Lzδr∆t+ cδrϵd (4.6.2a)
ψδv(δx,0, k∆t) ≤ Lzδv∆t+ cδvϵd (4.6.2b)

When either of these last two conditions becomes true, the MPC controller is
activated to reset the system to along it reference trajectory. Indeed equations
(4.6.2a) and (4.6.2b) are first hit when the state of the system is still inside
the safe set as the maximum variation of the constraint ζδr and ψδv over
an interval ∆t is given by Lzδr∆t + cδrϵd and Lzδv∆t + cδvϵd when the
inspector is not actuated. The final issue related to the consistent definition
of parameters pδr0,pδr1, pδv0 and ds that are able to satisfy all the feasibility



Inspection mission | 57

conditions specified so far is faced by simple trial and error in the current
thesis. The problem is commonly approached empirically by parameter
optimization algorithms which are not considered in the current work. An
example of parameters optimization is given in [23]. With reference to all the
aforementioned considerations, the final general FHOC problem to be solved
by the MPC for each inspector is defined as follows

min
ū∈UN

VN(eδx(k∆t), ū(k∆t)) (4.6.3a)

δx(0, k∆t) = δx̃(k∆t) (4.6.3b)
δx((i+ 1)∆t|k∆t) = F (δx(i∆t), b(i∆t),u(i∆t)) ∀i ∈ [0, 1..N − 1]

(4.6.3c)
∥u(i∆t|k∆t)∥2 ≤ ∥u∥2+ ∀i ∈ [0, 1, ..N − 1] (4.6.3d)
ζδr(δx(0|k∆t),u(k∆t), k∆t) ≥ Lδr∆t+ cδrϵd ∀i ∈ [0, 1, ..N − 1]

(4.6.3e)
ψδv(δx(0|k∆t),u(k∆t), k∆t) ≥ Lδv∆t+ cδvϵd ∀i ∈ [0, 1, ..N − 1]

(4.6.3f)

Where the constraint (4.6.3b) is the initial condition constraint for which
the initial nominal state δx is equal to the measured perturbed state δx̃, the
constraint (4.6.3c) is the dynamic constraint where F is the nominal inspector
discrete dynamics from (2.3.4), constraint (4.6.3d) is the convex constraint on
the maximum control authority. Constraint (4.6.3e) and (4.6.3f) are the SD-
HOCBF constraint on the position and the SD-CBF constraint on the velocity
respectively. The value function to be optimised is defined as

VN(eδx(k∆t), ū(k∆t)) :=
N−1∑
i=0

eTδx(i∆t|k∆t)Qeδx(i∆t|k∆t)+

eTu(i∆t|k∆t)Reu(i∆t|k∆t) + Vf (eδx(N∆t|k∆t))
(4.6.4)

Where the terminal cost Vf (eδx(N∆t|k∆t)) is defined as

eδx(N∆t|k∆t))TP ∗eδx(N∆t|k∆t)))

with terminal cost matrix P ∗ := µP and µ ≥ 1 such that P solves the Discrete
Algebraic Riccati Equation (DARE)

P = ATdPAd − (ATdPdB)(R +BT
d PBd)

−1(BT
d PAd) +Q. (4.6.5)



58 | Inspection mission

The matrices Ad and Bd appearing in the DARE directly derive from the
sample data CW model in equation (2.2.16). On the other hand, R and Q
are parameters of the problem that can be chosen to give the best control
performance.

4.6.0.1 Recursive feasibility and stability

As mentioned in the previous section, the simultaneous feasibility of the SD-
CBF and SD-HOCBF constraints inside the safe set is determined through
a gird search method over a dense discretization of the safe set Cδr ∩ Cδv.
The resulting state space that would need to be sampled is a six dimensional
state space (since δx ∈ R6). Due to the spherical symmetry of the sets
Cδr and Cδv it is possible to reduce the problem to three dimensions only.
Namely, the position error norm ∥eδr∥, the velocity error norm ∥eδv∥ and
the angle θ between these two vectors (See Figure 4.6). The cartesian product
[0, ϵδr]×[0, π]×[0, ϵδv] is hence discretised and applied to search for unfeasible
solutions to (4.6.1). It is recalled that for angles θ that are smaller than π/2
(See Figure 4.6), the radial component of the speed error should be clipped
to satisfy equation (4.3.20), which is required to maintain the state of the
inspector inside the safe set. Once this feasibility analysis is numerically
developed, the definition of a terminal set becomes unnecessary. Concerning
the stability, the problem is solved following the approach defined by [7].
Namely, it assumed that the cost function in (4.6.4) is a Lyapunov functions
for every state δx within the safe set Cδr ∩ Cδv. From this assumption, the
stability of the specified MPC scheme can be proved similarly to [7]. Note
that differently form [7], the feasibility of the MPC scheme is only proved
numerically and not analytically due to the multiple CBF constraints involved,
such the the stability and feasibility results are weaker than the ones developed
in [7].
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eδr

eδvθ

Figure 4.6: Graphical representation of the three main vectors involved in the
grid search for unfeasible simultaneous satisfaction of the SD-HOCBF and
the SD-CBF constraints. The position error vector eδr is maintained in fixed
direction and its magnitude its varied from its minimum to maximum value.
On the other hand, the velocity vector eδv is modified both in direction and
magnitude during the grid search algorithm.
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Chapter 5

Simulations and Results

In this subsection the control scheme developed in the previous Chapters is
tested by means of computer simulation for a single inspector and a multi-
agent inspection mission. The simulation is fully developed in Python and
the optimization library CasADi is applied to solve the nonlinear optimal
control problem (4.6.3) by means of the Interior Point Method algorithm. The
simulations were preformed on a 2,3 GHz Dual-Core Intel Core i5 CPU with
8GB of RAM. The simulation environment in which the inspector and the
ISS are propagated takes into account for zonal harmonic terms up to order
6 and exponential atmospheric drag. The open source astrodynamics toolbox
TuDat∗ was applied to asses the accuracy of the implemented model.

5.1 Single inspector simulation
In this subsection the performance of the MPC controller designed in the
previous section is evaluated in simulation for a single inspector, while the
multi-agent case is analysed in the next subsection. For both the multi-agent
and single agent mission scenarios, the inspector is assumed to be a 6U-
CubeSat with a total mass of 10 kg and an omnidirectional propulsion system
capable of delivering a maximum of 200 mN of thrust corresponding to a
maximum acceleration of 0.02m/s2

∗TuDat main wiki page : https://docs.tudat.space/en/stable/
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Figure 5.1: Plant of the ISS as seen in the H frame

m [kg] Cd S [m2] CD fth [N ]

ISS 4.194× 105 2.2 1.300× 102 3.409× 10−4 -
Inspector 1.000× 101 2.2 6.000× 10−2 6.600× 10−3 2.00× 10−1

Table 5.1: Specific simulation parameters for the inspector parameters
CubeSat and the ISS. The parameters presented for the ISS are obtained from
[29]. The inspector parameters are obtained from [4]

These same specifications are applied in [4] for a similar mission and are
considered to give a realistic operative scenario for the inspection mission.
The ISS has a mass of 419400 kg and no actuation capabilities. The reference
ISS orbit parameters are given is Table 4.1 while the physical specifics of the
inspector and the ISS are summarised in Table 5.1. It is futher assumed that
the inspector is already engaged into a PRO(70×140×0−0) around the ISS.
As pointed out in [4], CubeSats are commonly deployed directly from the ISS
thanks to the Nanorack system ∗, but the injection phase into the PRO is not
considered in the present work. The maximum safety distance ϵδr is selected

∗https://nanoracks.com/products/iss-launch/
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Figure 5.2: Computed value for ϵf ,ϵd and qq as a function of the separation
between the inspector and the ISS. Analytical formulation for ϵf ,ϵd and qq
is given in Appendix A.3. The atmospheric density is considered to be 3
g/km3 at the altitude of the ISS assuming mean solar activity while the darg
parameters for the inspector and the ISS are reported in Table 5.1
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to be 10 m with a maximum ISS-inspector separation of approximately 170

m for the selected PRO geometry. The parameter ds is selected to be equal to
3 m such that the maximum allowed speed error ϵv is computed based on the
defined safe distance ds as

ϵv =
pδr0
2

ϵ2r − d2s
ds

= 15.2 cm/s (5.1.1)

Figure 5.2 shows the value of the maximum dynamic acceleration ϵf ,
maximum perturbation acceleration ϵd and the parameters qq (from (4.5.3))
as a function of the separation between the inspector and the ISS. These
values are computed analytically in first order approximation in Appendix A.3.
The maximum control authority of the inspector is one order of magnitude
higher than ϵf for the given PRO geometry, while the worst case contribution
from the orbital perturbations (ϵd) is three orders of magnitude lower. The
further is the inspector position with respect to the ISS and the higher are the
differential orbital perturbations and differential dynamical accelerations as
shown in Figure 5.2. The parameters set pδr0,pδr1 and pδv0 are obtained by a
trial and error approach such that a feasible region (∥u∥+,∆t) for which the
condition ϕδr(∥u∥+,∆t) ≥ 0 (4.5.8) and ϕδv(∥u∥+,∆t) ≥ 0 (4.5.12) exist
(Figure 5.3b) and such that the problem (4.6.1) always has a feasible solution
over a dense discretization of the set [0, ϵδr] × [0, π] × [0, ϵδv] (Figure 5.3a).
In Figure 5.3a the states for which problem (4.6.1) is feasible are represented
in black and unfeasible states are represented in red. It is noted from Figure
5.3a that both the SD-CBF and SD-HOCBF constraint can be simultaneously
satisfied over the full discrete configuration space as no unfeasible solution
was found for (4.6.1). For this particular case, the position error norm ∥eδr∥
is discretised in steps of 6 cm, the velocity magnitude step is discretised in
steps of 0.1 cm/s and the angle range is discretised in steps of 1 deg. The
curvature shown in the lower right part of the grid is due to the clipping of
the speed norm as the radial velocity error component allowed inside the safe
set Cδv is limited for angle θ between 0 and 90 degrees For this simulation,
the parameters pδr0 and pδr1 are selected to be equal to 0.01 and 0.1 for the
position SD-HOBF and pδv0 is selected to be equal to 0.1 for the velocity SD-
CBF. The resulting feasible (∥u∥+,∆t) region is shown in the right panel
of Figure 5.3b while the constants Lδr,Lδv,Lzδv,Lzδr are summarised in Table
5.2. The size of the feasible (∥u∥+,∆t) space in Figure 5.3b is sensible to
the parameters pδv0,pδr1 and pδr0 such that a very narrow corridor exist for
the selection of these parameters. The main reason for this high sensibility
is due to the low control authority allowed by the propulsion system of the
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(a) 3D representation of the dis-
crete grid over the set [0, ϵδr] ×
[0, π]× [0, ϵδv].

(b) (left) 3D representation of the
functions ϕδr and ψδv from (4.5.8)
and (4.5.12)(right) 2D projection of
the region ϕδr ≥ 0 ∧ ϕδv ≥ 0 on the
∥u∥+ −∆t plane

Figure 5.3

inspector. From Figure 5.3b, the sampling time∆t is set at 150mswhich is the
maximum allowed for a maximum control authority of 0.02m/s2. In order to
asses the performance of the MPC controller designed, a set of 50 simulations
with random initial conditions inside the safe set are undertaken. For all the
simulations the initial velocity error norm ∥ϵδv∥ is considered to be equal to
the maximum allowed speed error ϵδv. Additionally the condition

eTδr(δx(t0), t0)eδv(δx(t0), t0) =
pδr0
2

(ϵ2r − eδr(δx(t0), t0)
2)

eδr(δx(t0), t0)

is enforced at time t0 of the simulation such that the inspector state is at the
border of Cδv at time t0. The time evolution of the SD-HOBF and SD-CBF
constraints together with the related CBF and HOCBF is shown in Figure
5.4. All the barriers and barrier constraint remain positive during the whole
system operation. The simulation terminates when the position and speed
errors decrease to 1 mm and 1 mm/s respectively. It is highlighted how the
SD-CBF constraint ψδv remains extremely close to its lower limit for all the
simulations due to the fact that the controller tries to reach the reference as
fast as possible while the barrier keeps the speed error norm constrained to its
maximum value ϵδv. This behaviour could be tuned for different choices of
the state cost and control cost matrices Q ad R.
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Figure 5.4: Time evolution of the SD-CBF constraint (ψδv(t)), SD-HOBF
constraint (ζδr(t)), velocity SD-CBF (hδv(t)), position SD-HOBF (hδr(t)) and
relative degree 1 position barrier (H1(t)). The different line plots correspond
to fifty different simulations with different initial conditions inside the safe set
Cδr ∩ Cδv
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(a) 3D representation of the discrete
grid over the set [0, ϵδr] × [0, π] ×
[0, ϵδv].

(b) (left)3D representation of the
functions ϕδr and ψδv from (4.5.8)
and (4.5.12)(right) 2D projection of
the region ϕδr ≥ 0 ∧ ϕδv ≥ 0 on the
(∥u∥+,∆t) plane

Figure 5.5

Parameters Value Unit Parameters Value Unit

ϵδr 10.00 m Lδr 7.58e−2 -
ϵδv 1.33e−1 m/s Lδv 1.16e−3 -
ds 3.00 m Lzδr 1.15e−2 -
pδr0 1.00e−2 1/s Lzδv 3.64e−5 -
pδr1 1.00e−1 1/s cδr 20.05e−2 m
pδv0 5.00e−2 1/s cδv 3.10e−1 m/s

Table 5.2: List of barriers parameters for the single agent mission

5.2 Multi-agent inspection
Similar to the single agent mission, a multi-agent mission is simulated over a
period of two orbits for three inspectors inserted into three different PROs.
A close up 3D view of the three different PROs is shown in Figure 4.1a,
while a graphical representation of the three inspectors orbiting around the
the ISS during the inspection is given in Figure 4.1b. The parameters defining
each inspector’s relative orbit are summarised in Table 5.3. The maximum
corridor width for each inspector is reduced to 7 m for this simulation while
the parameter ds is left unchanged at 3 m. All the agents are assumed to
have the same parameters pδv0,pδr0 and pδr1 as summarised in Table 5.4. The
constants Lδr,Lδv„Lzδr,Lzδv,cδv and cδr are computed for the inspector in the
outer most PRO and they are applied to all the three inspectors. This is a
conservative solution as the inner most inspectors present lower values for
ϵf ,ϵd,∥δrr∥+ and ∥δvr∥+. The maximum speed error ϵδv is set at 13.3 cm/s

(applying (5.1.1) as for the single agent simulation) while the value ϵf and ϵd
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ρx [m] ρy0 [m] ρz [m] αx [deg] αz [deg] ∥δr∥+ [m] ∥δv∥+ [m/s]

50.00 0.00 0.00 90.00 0.00 100 0.10
64.00 0.00 60.00 90.00 0.50 143.00 0.18
78.00 0.00 140.00 90.00 0.00 223.00 0.29

Table 5.3: List of parameters defining a unique PRO for each of the three
inspectors

Parameters Value Unit Parameters Value Unit

ϵδr 7.00 m Lδv 1.20e−3 -
ϵδv 1.33e−1 m/s Lzδr 6.30e−3 -
ds 3.00 m Lδr 4.35e−2 -
pδr0 2.00e−2 1/s Lzδv 1.89e−5 -
pδr1 5.00e−2 1/s cδr 14.04 m
pδv0 5.00e−2 1/s cδv 0.27 m/s

Table 5.4: List of barriers parameters for the multiagent mission

for each inspector are computed analytically identically to the single inspector
case (Figure 5.2).The selected sampling time is 100 ms, but the maximum
allowed sampling time is as high as 200ms as shown from the set of feasible
points (∥u∥+,∆t) in Figure 5.5b). On the other hand, Figure 5.5a shows the
solution to problem 4.6.1 for the outermost agent (the graphic is identical
for all the three agents as the same parameters are applied to all of them)
which shows that a feasible control exist over the full discretised safe set. The
time evolution of the SD-CBF and SD-HOBF together with their respective
constraint is shown in Figure 5.6a. The simulation is run over two full orbits.
The SD-CBF and SD-HOBF are respected during the whole mission duration
while the MPC controller is maintained inactive during approximately 96%
of the whole mission duration corresponding to 180 min of inspection under
zero actuation. The remaining 4% of the mission duration the MPC controller
is actuated. Eventually, Figure 5.6b shows the relative distance between the
three agents which always remains above zero for the whole duration of the
mission even when the agents are at the closest point along their reference.



68 | Simulations and Results

(a) Time evolution of relative position error, relative velocity error, HOBF hδr, CBF
hδv and H1 for the three inspectors involved in the inspection mission

(b) Relative distance between the inspectors over two orbital periods. A dashed line
represents the relative distance between the agents under zero tracking error.

Figure 5.6
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Chapter 6

Conclusions

The numerical simulations presented show that the derived control approach
meets the safety requirements established for the inspection mission both
for the case of multi-agent and single agent inspection. In addition, the
definition of SD-CBF from [7] was successfully extended to SD-HOCBF for
the particular choice of linear α functions. Although, many practical issues
are highlighted

• The derivation of suitable margins applied for ensuring safety in
between sapling intervals has been particularly challenging even for
simple linear α functions. It is considered that for more complicated
α functions, upper bounding the Lipschitz constant for the HOCBF
constraint could yield excessively small sampling times. This is a fact
that remains to be explored for future work.

• The attempt to derive a suitable minimum maximum control authority
∥u∥+ for the considered HOCBF constraint resulted in two main
fundamental conclusions: (1) under worse case scenario conditions
infinite control is required to satisfy the HOCBF constraint and this
happens exactly at the origin of the safe set where LgLfhδr = 0. This
conclusion does not depend on the applied linear α functions, but it is
generalizable to more complex functions as LgLfhδr eventually goes
to zero at the origin of the safe set for every choice of the functions
α. This same problem does not arise in [23] for example where the
objective is to a void a given spherical unsafe set wrapped around an
obstacle to be avoided (the opposite case of the current work). In this
case, the position error will never reach zero norm inside the safe set.
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(2) It is not possible to make any consideration on the satisfaction of
the HOCBF constraint defined in the present work if the system speed
is not bounded. In the presentation, a solution to the problem has been
explored by the introduction of a barrier constraint on the velocity error.
This solution comes with the cost of dealing with possibly colliding
barrier constraints. Other choices are left to be explored as future work

• A formal and solid paradigm to determine the coefficients pδv0,pδr0,pδr1
remains an open question from the current work

However the controller has shown to be successful for the given simulation, it
is acknowledge that practical implementation could present many difficulties
related to the precision of the navigation system applied on board the
inspectors. The GNSS system remains the only navigation systems capable
of a satisfying the precision and accuracy required for the mission, although
the capabilities of GNSS receivers are not yet technologically ready for the
requirements of the presented mission. Further research should be conducted
in order to address the robustness of the presented control strategy under sensor
noise and measurement error.

6.1 Future work
Throughout the current thesis project, some relevant aspects of the inspection
mission concept presented need to be addressed as future work. Namely, the
thesis work mainly focused on the development of a safe controller for the
inspectors, while aspects related to the visual inspection through the camera
payload mounted on each inspector was left unaddressed. As a future work,
it is interesting to design a proper Machine Vision architecture that could
take advantage of the PRO geometry of each inspector to obtain an high
resolution screening of the outer structure of the ISS. In addition to that,
an attitude controller that takes care of the camera pointing should also be
designed. It is envisaged that some of the most interesting challenges to solve
will be (1)designing a controller with high pointing accuracy,(2) handling of
differential lightning conditions between the cameras due to the ISS orbit
around the Earth (3)the design of a computer vision architecture that can
handle information from different cameras to achieve an high resolution map
of the outer structure of the ISS so that critical failures can be identified or
prevented.
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Appendix A

Appendices

A.1 Relative kinematics
In this section, the equations of motion of a point mass p as described in a
rotating frame are derived. First, an inertial frame J and a rotating frame K
are defined as in Fig A.1 It is known from rational mechanics that the time
derivative of a vector quantity observed from the inertial frame J , relates to
the time derivative in the rotating frame K as [Equation 1.20 in [16]]

∂(·)
∂t

|J =
∂(·)
∂t

|K + ωK/J ∧ (·) (A.1.1)

In equation (A.1.1), the angular velocity of frame K with respect to frame J
is denoted as ωK/J . The vertical bar symbol | is used to define the observer
frame. The observer is the frame of reference with respect to which the time
derivatives of vectors are developed. This definition of the observer frame is
fundamentally different from the definition of the coordinate frame, which is
the reference frame in which vectors are described component wise. A vector
could be both described in the same observer and coordinate frame, or it is
possible that these last two are different. When writing equation (A.1.1) it is
always assumed that the coordinate frame is consistent for the RHS and LHS.
The following remarkable property derives from equation (A.1.1)

∂ωK/J

∂t
|J =

∂ωK/J

∂t
|K + ωK/J ∧ ωK/J =

∂ωK/J

∂t
|J (A.1.2)
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Figure A.1: Inertial frame B and rotating frame K. The point mass body p is
represented as a cube in the Figure

Hence the time derivative of the relative angular velocity is the same in J and
K.

Building on equation (A.1.1), it possible to relate the time derivative of the
vector p in the observer frame J to the one obtained in the observer frame
K.

∂p

∂t
|J =

∂p

∂t
|K + ωK/J ∧ p (A.1.3)

The relative acceleration is obtained by differentiating again

∂2p

∂2t
|K =

∂

∂t
|K(

∂p

∂t
|J ) +

∂

∂t
|K(ωK/J ∧ p) (A.1.4)

Every quantity on the right must be expanded again following the rule
expressed in equation (A.1.1)
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∂2p

∂2t
|K =

∂2p

∂2t
|J +ωK/J ∧ ∂p

∂t
|J + ω̇K/J ∧ p+ωK/J ∧ (

∂p

∂t
|J +ωK/J ∧ p)

(A.1.5)

Where property equation (A.1.2) is used to take the time derivative of ωK/J .
Re-arranging equation (A.1.5) leads to

∂2p

∂2t
|K =

∂2p

∂2t
|J +2ωK/J ∧ ∂p

∂t
|J + ω̇A/B∧p+ωK/J ∧ (ωK/J ∧p) (A.1.6)

A.2 Direction cosine matrix
Vectors could be represented in multiple coordinate frames of reference and
the most convenient choice should always be made in order to describe a given
systems. Nevertheless, it is essential to be able to change from one coordinate
frame to another when required. This is important especially in astrodynamics
applications where many different frames of reference are applied. Given a
frame of reference A (â1, â2, â3) and a frame of reference B (b̂1, b̂2, b̂3) , it
is possible to compute a mapping CB

A : R3 → R3 that transforms any vector
described inA coordinates to frameB coordinates by computing the following
matrix

CB
Aij

= b̂i · âj = cos(αij) (A.2.1)

The matrix CB
A takes the name of Direction Cosine Matrix due to the fact that

each entry represents the cosine of the angle between the base vector âj of
the A frame and the base vector b̂i from the B frame. Thanks to CB

A it is
possible to change coordinates from frame A to frame B. Due to the nice
ortho-normality property, the inverse coorindate transformation is given by
(CB

A)
−1 = (CB

A)
T .

A.3 Derivation of the maximum relative space-
craft dynamics acceleration

In this section, a suitable upper bound on the relative acceleration between the
deputy and the chief is derived. First the relative acceleration δa of the deputy
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relative to the chief in the Hill’s observer frame of the chief is recalled

δa = δr̈g + δafc + δd+ u (A.3.1)

Considering all the accelerations but the propulsion system of the deputy u, it
is desired to find suitable first order approximations for the norm of r̈g, δafc
and δd. Consistently with the rest of the presentation, the maximum norm of
a vector or matrix, will be denoted by the notation ∥∥+. First the relative point
mass gravity acceleration is isolated and rewritten in terms of the point mass
potential Upm as

δr̈g = − µ

r3dep
rdep +

µ

r3ch
rch = −∇Upm(rdep) +∇Upm(rch)

Considering that rdep = rch+δr and ∥δr∥ ≪ rch, a first order approximation
for the relative acceleration due to point mass gravity is derived by means of
a Taylor series expansion of ∇Upm(rdep) as follows

−∇Upm(rdep)+∇Upm(rch) = −∇(Upm(rdep)−Upm(rch)) ≈ −∇2Upm(rch)δr

Where the Taylor expansion Upm(rdep) = Upm(rch) + ∇Upm(rch)δr +

O(∥dr∥2) is applied to derive the RHS. The maximum relative acceleration
due to point mass gravity is then upper bounded neglecting the higher order
terms of the Taylor series

∥δr̈g∥+ ≤ ∥∇2Upm(rch)∥2∥δr∥+

It is recalled that the the 2-norm of the matrix ∇2Upm(rch) is equal to the
maximum singular value of the matrix.

Next the relative perturbation acceleration δd is upper bounded. The relative
perturbation acceleration is unpacked as

δd = dzh,dep + ddrag,dep − dzh,ch − ddrag,ch = δddrag + δdzh

The relative atmospheric drag acceleration δddrag is approximated considering
that the inertial atmospheric velocity of the chief and the deputy are
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approximately the same so that V̇atmo,ch ≈ V̇atmo,dep. In addition to that,
the density variations over 1 km separation could be neglected when dealing
with LEO orbits [[2],Section 2.3.3]. The differential drag acceleration is then
approximated as

δddrag ≈ (CDdep − CDch)ρ(rch)∥Vatmo,ch∥2V̂atmo,ch

A first order approximation for the maximum differential drag acceleration is
then given by

∥δddrag∥+ ≤ (CDdep − CDch)∥ρ(rch)∥+∥Vatmo,ch∥2+

On the other hand the relative acceleration due to high order zonal harmonics
δdzh is derived by applying the same approach developed for δr̈g replacing
Upm with Uzh.

δdzh ≈ ∇2Uzh(rch)δr

Due to the fact that the J2 zonal harmonic is the highest zonal harmonic term
and it is three order of magnitude higher than the successive zonal terms, an
upper bound dzh is given by considering only the J2 potential as

∥δdzh∥+ ≤ ∥∇2UJ2(rch)∥2∥δr∥+

The last acceleration to be upper bounded is the fictitious acceleration δafc
whose definition is recalled as

δafc = −2ωH/I ∧ δv − ω̇H/I ∧ δr − ωH/I ∧ (ωH/I ∧ δr)

The definition of ωH/I and ω̇H/I is also recalled for convenience
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ωr =
rch
h
dw

ωs = 0

ωw =
h

r2ch

ω̇r =
ṙch
h
dw − ḣ

rch
h2
dw +

rch
h
ḋw

ω̇s = 0

ω̇w =
ḣ

r2ch
− 2ṙch

h

r3ch

(A.3.2)

In order to limit the complexity of the derivation it assumed that the chief orbit
is nearly circular so that ω̇H/I is approximately equal to zero. In addition it
is noted that ωr is at least three orders of magnitude lower than ωw such that
∥ωH/I∥ ≈ h

r2
. Note that for circular orbits rch is constant and equal to the

semimajor axis. Given the nearly circular chief orbit assumption, afc is upper
bounded as

∥afc∥+ ≤ 2ωw∥δv∥+ + ω2
w∥δr∥+

The case of elliptical orbit could be derived assuming the less strong
assumption that only ω̇r ≈ 0 but the derivation of the upper bound in this
case is not developed further. Table A.1 summarises all the intermediate upper
bounds which are valid in case of nearly circular orbits.

Term Upper Bound

∥δr̈g∥ ∥∇2Upm(rch)∥+∥δr∥+

∥δafc∥ ωw∥δv∥+ + ω2
w∥δr∥+

∥δdzh∥ ∇2UJ2(rch)∥+∥δr∥+

∥δddrag∥ ∥(CDdep − CDch)ρ∥Vatmo,ch∥2

Table A.1: Upper bounds on relative accelerations terms
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A.4 Derivation of the maximum relative space-
craft dynamics acceleration time deriva-
tive

In this section, an upper bound on the time derivative of r̈g, δafc and δd is
developed. The inertial relative acceleration δr̈ of the deputy is related to the
non-inertial relative acceleration δa as

δr̈ = δa+ 2ωH/I ∧ δv + ω̇H/I ∧ δr + ωH/I ∧ (ωH/I ∧ δr) (A.4.1)

The inertial time derivative of the relative acceleration δ ...
r is related to the

time derivative of the non-inertial relative acceleration δȧ as

δ
...
r =δȧ+ ωH/I ∧ δa+ 2ω̇H/I ∧ δv + 2ωH/I ∧ (δa+ ωH/I ∧ δv) + ω̈H/I ∧ δr+

ω̇H/I ∧ (δv + ωH/I ∧ δv) + ω̇H/I ∧ (ωH/I ∧ δr) + ωH/I ∧ (ω̇H/I ∧ δr)+
ωH/I ∧ (ωH/I ∧ (δv + ωH/I ∧ δr))

(A.4.2)
Where the transport theorem from equation (A.1.1) is used to derive equation
(A.4.2) form equation (A.4.1). It order to reduce the complexity of the
derivation, only the case of nearly circular orbits is developed analytically such
that ω̇H/I ≈ 0 and ω̈H/I ≈ 0. Given the nearly circular orbits assumption
yields

δ
...
r = δȧ+3ωH/I∧δa+3ωH/I∧(ωH/I∧δv)+ωH/I∧(ωH/I∧(ωH/I∧δr))

(A.4.3)
Isolating δȧ on the left side of equation (A.4.3), the resulting time derivative
of the relative acceleration in the H is given by

δȧ = δ
...
r −(3ωH/I ∧ δa+ 3ωH/I ∧ (ωH/I ∧ δv) + ωH/I ∧ (ωH/I ∧ (ωH/I ∧ δr)))︸ ︷︷ ︸

δȧfc

(A.4.4)
Where the inertial acceleration δ ...

r is the unpacked as

δ
...
r =

d

dt
r̈ =

d

dt
(− µ

r3dep
rdep +

µ

r3ch
rch)︸ ︷︷ ︸...

r g

+δḋ+ u̇

and
δȧ =

...
r g + δȧfc + δḋ+ u̇
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The time derivative of the gravity acceleration ...
r g is rewritten in terms of the

potential

...
r g = − d

dt
∇(U(rdep)− U(rch)) (A.4.5)

Applying the chain rule on equation (A.4.5) leads to

...
r g = −∇2U(rdep)ṙdep +∇2U(rch)ṙch (A.4.6)

For small separations (∥δr∥ ≪ ∥rch∥) the approximation ṙch ≈ ṙdep is valid
(note that ṙ indicates the inertial velocity). Additionally, rdep = rch + δr

so that a first order Taylor approximation on the deputy potential is given
as Upm(rdep) = Upm(rch) + ∇Upm(rch)δr + O(∥δr∥2). Neglecting the
higher order terms in the series, a first order approximation for ...

r g is obtained
as

δȧg ≈ −∇3Upm(rch)δr ṙch (A.4.7)

Which is upper bound as

δȧg ≤
»
λ2∂xUpm

+ λ2∂yUpm
+ λ2∂zUpm

∥δr∥+ ∥ṙch∥+ (A.4.8)

Where λ∂xUpm := ∥ ∂
∂x
(∇2U)∥2,λ∂yUpm := ∥ ∂

∂y
(∇2U)∥2 and λ∂zUpm :=

∥ ∂
∂z
(∇2U)∥2 It is note worth mentioning that ∇3Upm(rch) is a three

dimensional tensor of dimension 3x3x3 in the form

(∇3U)ijk =
∂

∂xk
(∇2U)ij (A.4.9)

Next, the time derivative of the perturbing acceleration is unpacked as

δḋ = δḋdrag + δḋzh (A.4.10)

The differential drag acceleration is approximately given as ḋdrag

δddrag ≈ (CDdep − CDch)ρ∥V̂atmo,ch∥2 (A.4.11)

In order to limit the complexity of the derivation it is assumed that the
chief orbit is nearly circular so that V̇atmo,ch ≈ 0. Hence δḋdrag becomes
approximately



Appendices | 79

δḋdrag ≈ 0 (A.4.12)

On the other hand, the definition of δḋzh is obtained exactly with the same
procedure derived for δȧg such that

δḋzh ≤
»
λ2∂xUzh

+ λ2∂yUzh
+ λ2∂zUzh

∥δr∥+ ∥ṙch∥+ (A.4.13)

It is recalled that the J2 zonal term is the dominant zonal term by at least three
orders of magnitude such that this is the only zonal term considered

δḋzh ≤
»
λ2∂xUzh

+ λ2∂yUzh
+ λ2∂zUzh

∥δr∥+ ∥ṙch∥+ (A.4.14)

At last, the definition of ȧfc for nearly circular orbits is given by

δȧfc = −(3ωH/I∧δa+3ωH/I∧(ωH/I∧δv)+ωH/I∧(ωH/I∧(ωH/I∧δr)))
(A.4.15)

It is recalled that in case of nearly circular orbit, the term ∥ωH/I∥ is
approximately constant and ∥ωH/I∥ ≈ h

a2
= ωw. Hence δȧfc is upper

bounded as

∥δȧfc∥ ≤ 3ωw∥δa∥+ + 3ω2
w∥δv∥+ + ω3

w∥δr∥+ (A.4.16)

From the definition of ∥δa∥ in Section A.3 it is also possible to further
rearrange equation (A.4.16) as

∥δȧfc∥ ≤ 3ωw(∥δr̈g∥+ + ∥δafc∥+ + ∥δd∥+ + ∥u∥+) + 3ω2
w∥δv∥+ + ω3

w∥δr∥+
(A.4.17)

Table A.2 summarises all the results obtained in this section
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Term Upper Bound

∥δȧg∥
»
λ2∂xUpm

+ λ2∂yUpm
+ λ2∂zUpm

∥δr∥+ ∥ṙch∥+

∥δȧfc∥ 3ωw∥δa∥+ + 3ω2
w∥δv∥+ + ω3

w∥δr∥+

∥δḋzh∥
»
λ2∂xUzh

+ λ2∂yUzh
+ λ2∂zUzh

∥δr∥+ ∥ṙch∥+

∥δḋdrag∥ 0

Table A.2: Upper bounds on relative accelerations terms assuming circular
chief orbit reference
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