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Abstract

As space missions impose increasingly strict requirements on spacecraft attitude

control and maneuverability, shaping an accurate yet efficient model of propellant

sloshing becomes essential. Such model not only support advanced control strategies

but also enhance mission safety and reusability. This work adopts a mechanical-

equivalent approach that reproduces key physical behavior as effective inertia, slosh

modes, and mass displacement, while maintaining computational efficiency. The

model is implemented in Simulink for direct integration with the Attitude and Orbit

Control System (AOCS).

Firstly, a complete parameter set is derived as a function of fill ratio for representative

tanks in both low-g and high-g conditions. Then, a modular structure is introduced,

using the Bond number (Bo) as the switching condition between regimes. Three

configurations are addressed: stable high-g (Mode 1), stable low-g (Mode 2), and

a transitory state (Mode 3), with a mixed regime spanning the transition between

capillarity- and gravity-dominated behavior. New formulations for Modes 2 and 3

are developed, and their parameters are characterized. Finally,the coupled interaction

between sloshing and spacecraft dynamics is analyzed, and the general model

applicable across mission phases, tank geometries, and fluid types is provided.

Keywords

Slosh, Sloshing model, Attitude and orbit control system, spacecraft dynamics

coupling.
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Abstract

När många rymduppdrag ställer allt högre krav på rymdfarkosters attityd- och

manöverkontroll blir det avgörande att utveckla en modell av drivmedelssvängningar

i tankar som är både noggrann och beräkningseffektiv. En sådan modell möjliggör

inte bara avancerade styrstrategier utan bidrar också till ökad säkerhet och

återanvändbarhet. I detta arbete används en mekaniskt ekvivalent metod som

återger centrala fysikaliska egenskaper – såsom effektiv tröghet, svängningsmoder och

massförskjutning – med bibehållen beräkningseffektivitet. Modellen implementeras i

Simulink för direkt integration i Attitude and Orbit Control System (AOCS).

En fullständig parameteruppsättning härleds som funktion

av fyllnadsgrad för representativa tankar under både låg-g- och hög-g-förhållanden.

Därefter introduceras enmodulär struktur där Bond-talet (Bo) används som kriterium

för övergång mellan olika regimer. Tre konfigurationer behandlas: stabil hög-g

(Mode 1), stabil låg-g (Mode 2) och ett övergångstillstånd (Mode 3), samt ett blandat

tillstånd som beskriver skiftet mellan kapillär- och gravitationsdominerat beteende.

Nya formuleringar för Mode 2 och Mode 3 utvecklas och deras parametrar bestäms.

Slutligen analyseras den kopplade dynamikenmellan svängningar och rymdfarkostens

rörelser, och en generell modell presenteras som kan tillämpas på olika uppdragsfaser,

tankgeometrier och vätskor.

Nyckelord

Slosh, Sloshingmoder, Attityd- och omloppskontrollsystem, dynamisk koppling.
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Chapter 1

Introduction

This thesis addresses the development of a Simulink model to represent the sloshing

phenomenon. In general, the term sloshing refers to the oscillatory motion of a liquid

inside a container when subjected to external accelerations or rotational dynamics.

Understanding this behavior is essential in both terrestrial and space applications,

though the associated risks and operational requirements differ significantly.

As for terrestrial context, an example of sloshing can be found on trucks transporting

liquids in large containers mounted along the length of the vehicle itself. The motion

of the liquid is influenced by road irregularities, such as bumps or sudden turns,

which can shift the truck’s centre of mass in unpredictable ways, increasing the risk

of rollover or loss of maneuverability. Space applications involve instead some further

complexity. On Earth, gravity provides a constant stabilising acceleration that governs

fluid motion. In space, however, objects experience conditions of near weightlessness

because they are in continuous free fall around Earth. During a spacemission, both the

magnitude and direction of accelerations and rotations can vary significantly across

different flight phases. Conditions range from the high accelerations experienced

during launch, to prolonged periods of microgravity when the spacecraft is in a

quiescent or idle state. This variability creates many possible configurations and

motion that the fluid would follow, all of which need to be tracked and studied to

maintain performance and to ensure mission safety.

In a spacecraft, the subsystem most affected by sloshing dynamics is Attitude and

Orbit Control System (AOCS). This subsystem is responsible for controlling and

maneuvering the spacecraft, which requires precise tracking of the inertia distribution
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CHAPTER 1. INTRODUCTION

in all configurations, as well as accurate knowledge of both the static and dynamic

Center of Mass (COM). As the name suggests, the dynamic component of the COM

is influenced by all motion within the spacecraft. This includes the deployment or

movement of solar panels or booms, optical equipment pointing maneuvers, and,

importantly, the movement of propellant inside the tanks.

Accurate knowledge of how the fluid moves and settles is a significant advantage for

spacecraft control using reaction wheels and thrusters. If the motion of the fluid

is not represented in the AOCS algorithm, it becomes an unmodelled disturbance

in the control loop. While control systems are often designed to be robust to

such disturbances, performance and accuracy improve significantly when the control

algorithm accounts for the actual motion in advance. The pointing accuracy

requirements for many modern satellites and spacecraft have risen to extremely

high standards in recent missions. Earth observation satellites such as Sentinel-2

require angular stability in the order on 10−6 rad for submeter image resolution [21].

For astronomy missions, like James Webb Space Telescope (JWST), it can demand

stability below 7 milliarcseconds to keep images non blurred after long exposure[20].

But these is also true for communication satellites, especially when they present

high data-rate. Such levels of precision leave very little tolerance for unmodelled

disturbances such as propellant sloshing, especially during critical maneuvers or fine

pointing phases.

Sloshing analysis therefore becomes an essential consideration in the design of control

algorithms for missions requiring high precision. The present work investigates

previously used modelling approaches through a literature review and develops a

suitable model for the various phases of a typical space mission. This model is

designed with consideration of general space environment characteristics, required

manoeuvres, common tank geometries, and typical interfaces between the sloshing

model and other components of the AOCS algorithm.

1.1 Motivation

The motion of fluid in spacecraft tanks can represent a significant fraction of

the total spacecraft mass moving in an uncontrolled manner during each phase

of a mission. This not only affects the geometric and mass properties of the

system but also poses direct risks to mission safety. Uncontrolled fluid motion can

2



CHAPTER 1. INTRODUCTION

compromise spacecraft maneuverability, potentially overwhelming the capabilities

of AOCS hardware, including reaction wheels and thrusters. Moreover, resonance

between the fluid motion and the spacecraft’s structural or control system frequencies

could lead to catastrophic build-up, ultimately causing mission failure.

As modern missions impose increasingly tight performance requirements, the

allowable margin for unmodeled disturbances becomes minimal. Accurate knowledge

of all spacecraft subsystems is essential to ensure maximal performance. This

is particularly critical for high-precision pointing and proximity operations. For

instance, the European Space Agency (ESA) Comet Interceptor mission aims first

to detect and select a comet based on in-orbit observations. After handling precise

thrusting maneuvers at relatively high accelerations, the spacecraft will have to

accurate point its instruments towards a comet. This is required to be performed in

high accuracy while in microgravity conditions. The conditions of the encounter are

considered to be possibly inducing some transitory motion in the tank due to impact

of dust and precise impulses.

Experimental studies of fluid motion, such as those conducted on the International

Space Station (ISS), provide insights into the fundamental behavior of fluids in

microgravity aimed to a scientific undestanding of the phenomenon but with

no practical solution or uses. Meanwhile, other investigations are based on

computationally intensive methods to simulate fluid dynamics under various

conditions. In aeronautics, fluid dynamics in containers has been extensively

studied using both analytical approaches and Computational Fluid Dynamics (CFD)

simulations. One commonly used technique for sloshing studies is the Volume of

Fluid (VOF) method, which allows precise tracking of the fluid surface deformation.

Compared to simpler methods (e.g., potential flow or shallow-water approximations),

VOF provides more accurate predictions of spatial distribution, forces exerted on tank

walls, and fluid shape under dynamic excitation. All these parameters are indeed

highly important for a control environment on a spacecraft.

However, while CFD provides high-fidelity results, it is too computationally expensive

to integrate directly into AOCS simulations. Therefore, sufficiently accurate models

which also maintain light computational costs are required for real-time control

applications. Traditionally, passive control techniques, such as baffles or bladders,

have been used to mitigate sloshing. Actively controlling sloshing, however, could

3



CHAPTER 1. INTRODUCTION

eliminate the need for internal hardware, reducing spacecraft mass, cost, and

manufacturing complexity. An accurate sloshing model offers a strategic advantage

for spacecraft manufacturers by enhancing safety, reliability, and overall mission

performance while reducing both operational and environmental risks. It is worth

noting that detailed knowledge of how AOCS systems handle sloshing is rarely

public, making research in this area both more challenging and especially needed.

Apart from technical performance, the usage of passive hardware has impact on

budget and sustainability due to lack of reusability and manufacturing demands.

Missions where sloshing is not properly modeled pose safety risks to the spacecraft

and payload, potentially causing mission failure or environmental contamination.

Accurate, reusable, and actively controllable sloshing models help ensure mission

success while reducing environmental impact.

From an industrial perspective, the sloshing model must be computationally efficient,

easy to use, and adaptable to various spacecraft designs. Following amodular structure

ensures reusability across projects without major redesigns, facilitating integration

with other subsystems and enabling future controller development.

1.2 Problem Statement

The real added value of this thesis lies in addressing the gap between scientific

and demonstrative experiments, CFD simulations, and linearised analytical models.

Current knowledge about sloshing, as presented in publicly available literature, is

often not structured in a way that is suitable or convenient for application within

an AOCS environment. Existing works have largely focused on specific experimental

tanks or setups, without developing a generalised model that can adapt to different

tank geometries, fluids, and external conditions. Such generality is essential to ensure

reusability across a variety of applications.

Furthermore, current approaches either demand significant computational

resources—making themunsuitable for fast, system-level analysis—or oversimplify the

physics, reducing their representativeness of real behaviour, especially in the case of

large-amplitude oscillations. A physically justified, computationally efficient model

capable of representing a wide range of motion types is still lacking.

In addition, industry requirements are rarely integrated into academic research on
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CHAPTER 1. INTRODUCTION

this topic. This work addresses that gap by developing a generalised sloshing model

that not only incorporates physical accuracy and computational efficiency but is also

designed for full integration into the existing simulation environment at OHB. The

ultimate goal is to deliver a model that is reusable, physically sound, and directly

applicable in industrial contexts.

1.3 Outline

The following chapters present the outcomes of this work in a structured manner.

Chapter 2 introduces the theoretical background and the methodology used for the

derivations that follow. Chapter 3 builds on the existing literature to justify the

mechanical equivalent method and highlight its advantages, while also presenting the

models used in this thesis along with their physical foundations. Chapter 4 details the

equations derived to describe the differentmodes, their parameters, and the associated

switching logic. Chapter 5 presents the structures and the inputs of the used Simulink

model with inputs for its verification. Finally, Chapter 6 discusses the conclusions

drawn from this work and reflects on its achievements, while also outlining directions

for future research.
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Chapter 2

Theoretical Background

This chapter gathers the essential theoretical explanations that, in later chapters, may

be assumed as known. Presenting them here ensures the reader has a clear reference

point.

The subject of this thesis draws on knowledge from multiple fields: fluid dynamics,

control theory, modelling, and analytical mechanics, as well as structural dynamics for

understanding natural frequencies. It also requires familiarity with aspects of space

missions, including the hardware used for manoeuvring and the various environments

a spacecraft may encounter during its mission.

While it is assumed that the reader is already familiar with most of these topics, brief

overviews and reminders are provided here to establish a common foundation.

2.1 Resonant Frequency and Structural Dynamics

Every mechanical system has natural frequencies at which it tends to oscillate when

disturbed. These resonant frequencies depend on the system’s mass distribution and

stiffness. For simple systems as single Degree of Freedom (DOF) oscillation mass, the

natural frequency is simply derived from fn = 1
2π

»
k
m
, with k being the stiffness and

m the mass of the oscillating body. While for more complex and compound systems

as spacecraft, analytical methods like Finite Element Method (FEM) can be used,

or alternatively vibration tests are common on space components but not as easily

accessible. These ways both deliver the set of natural frequencies and corresponding

mode shapes which characterise the specific body.

6



CHAPTER 2. THEORETICAL BACKGROUND

When an external excitation is applied to a system with near natural frequency,

resonance can happen. Indeed, oscillations can be significantly amplified to the limit

of becoming a structural risk. In spacecraft, structural resonances can couple with

other dynamic phenomena, such as fuel sloshing or flexible appendages oscillations,

potentially leading to large attitude disturbances or even control instability. For tanks

containing liquid propellant, the sloshingmotion has its own set of natural frequencies,

often computed using analytical approximations or CFD simulations formore complex

cases.

It is important to model these oscillations, which can also change in range under

different external conditions. This is relevant not only for structural safety,that

however is usually out of danger because of the different ranges in natural frequencies

for structure and fluid sloshing; but also because resonance can occur with control

system frequencies. This fluid-control interaction can amplify oscillations, degrade

pointing accuracy, and in some cases lead to instability if not properly accounted for

in the design.

2.2 AOCS Hardware

It is valuable to review the types of control hardware present on a spacecraft, as

the outputs of these devices are the main inputs driving the motion of the fluid.

To maneuver a spacecraft in the classic six degrees of freedom (three rotations

and three translations), reaction wheels and thrusters are typically employed. The

number of these components may vary between spacecraft and redundancy is typically

maintained.

Reaction wheels are momentum exchange devices used to control a spacecraft’s

attitude without consuming propellant. Each unit consists of a flywheel driven by

an electric motor; by changing the wheel’s rotational speed, the spacecraft’s body

rotates in the opposite direction due to conservation of angular momentum. Reaction

wheels enable precise, continuous control and are commonly used for fine pointing

in applications such as Earth observation or astronomical missions. Their main

limitations are restricted torque capability and the potential for saturation over time

if external torques (e.g., from gravity gradients or solar radiation pressure) are not

counteracted.

7



CHAPTER 2. THEORETICAL BACKGROUND

Thrusters provide direct force and torque by expelling mass at high velocity, in

accordance with Newton’s third law. Depending on mission requirements, they may

use chemical propulsion or electric propulsion. Within the AOCS framework, thrusters

are often employed for fast attitude maneuvers, reaction wheel de-saturation, or as

backup attitude control devices when reaction wheels are insufficient or unavailable.

Unlike reaction wheels, thrusters consume propellant, making their use a key factor in

mission lifetime management.

2.3 Landau Derivation for Moving Frame

The motion of the fluid in the tank must be described by Equation of Motion (EOM)

that provide all relevant information about the fluid mass position and its evolution

over time. In this thesis, the EOMs are derived using the Lagrange formalism, which

is particularly useful for tracking the evolution of the (DOFs) even in complex, coupled

systems. Moreover, the Lagrangian approach offers direct insight into the system’s

energy balance, which can serve as a valuable tool for assessing the physical reliability

of results. Monitoring the evolution of the system’s energy and its conservation in the

right configurations can be implemented in the model as a tool to check validity.

For this reason, the Landau formalism for deriving equations of motion in a non-

inertial frame is presented here, along with its impact on the energy terms. The

non-inertial frame is especially relevant for this work, as the spacecraft environment

involves both acceleration and rotation. This contrasts with most experimental setups

found in the literature, which are typically conducted on stationary tables in laboratory

conditions and do not present the coupling effects and non-inertial forces that are

present in an actual spacecraft.

It will be considered a moving frame, in particular one which is accelerating with

acceleration a and rotating with angular velocity ω , with respect to an inertial frame.

In the inertial frame, the Lagrangian is

L0 =
1

2
mv20 − U (2.1)

and the equation of motion derived from it is

m
dv0
dt

= −∂U
∂r

(2.2)

8



CHAPTER 2. THEORETICAL BACKGROUND

Because ∂L0

∂v
= mv0 and that derived in time is mdv0

dt
while the Lagrangian partially

derived for the position vector is ∂L
∂r

= −∂v
∂r
.

If the equations of motion are instead derived in a non-inertial reference frame, the

Lagrangian is still
d

dt

(
∂L
∂v

)
=
∂L
∂r

(2.3)

because it is based on the least action principle which is independent of the frame.

However, the transformation L0 → Lmust be defined. It can be considered a process

in two steps, defining first a translating frame K ′, characterised by moving with a

velocity V (t) relative to the frameK0, such as

v0 = v′ + V (t) (2.4)

Substituting this expression in L, it gives

L′ =
1

2
m(v′2 + V (t)2 + 2v′V (t)) (2.5)

The second term in the summatory can be omitted if the focus is on the motion of the

accelerated frame only, since it can be substituted with a function of time in some other

parameter in frameK ′. Considering v′ = dr′

dt
the last term can be expanded in

mv′V = mV · dr
′

dt
= m

d

dt
(V · r′)−m

dV

dt
· r′ (2.6)

that when is substituted in L′ results as

L′ =
1

2
mv′2 −m

dV

dt
r′ − U (2.7)

where dV
dt

= a(t) is the translational acceleration of the frame K ′. In the Lagrangian

derived inK ′, one extra term appears, compared to the inertial frame:

m
dv′

dt
= −∂U

∂r
−ma(t) (2.8)

Thismeans that the equations deriving from the last expression are equivalent to those

for themotion of a particle inserted in an homogeneous force field, equal inmagnitude

to the mass of the particle (m) multiplied by the acceleration a but with opposite

sign.

9



CHAPTER 2. THEORETICAL BACKGROUND

Considering now the transition K ′ → K, where K is a rotating frame with angular

velocity Ω(t) relative toK ′. The velocity is now expressed as follows

v′ = v + Ω× r (2.9)

and, when substituted in L0, gives the relative Lagrangian L

L =
1

2
m(v2 + 2v · Ω× r + (Ω× r)2)− U −ma · r (2.10)

which represents the Lagrangian in an arbitrary - potentially not inertial - frame.

Also it can be rearranged mv · Ω × dr = mdr · v × Ω and the Lagrangian differential

becomes

dL = mdv · v+mdv ·Ω× r+mv ·Ω×dr+m(Ω× r) · (Ω×dr)− ∂U

∂r
·dr−ma ·dr (2.11)

The components to derive the governing equations are derived as

∂L
∂v

= mv +m(Ω× r) (2.12)

∂L
∂r

= mv × Ω +m(Ω× r)× Ω− ∂U

∂r
−ma (2.13)

and combining in d
dt

(
∂L
∂v

)
− ∂L

∂r
= 0 , it results as:

m
dv

dt
= 2mv × Ω︸ ︷︷ ︸

A

−mΩ̇× r︸ ︷︷ ︸
B

−mΩ× (Ω× r)︸ ︷︷ ︸
C

−∂U
∂r

− ma︸︷︷︸
D

(2.14)

It is valuable to notice that the labeled terms represent particular pseudo-forces in the

non inertial frame:

• A term: Coriolis force, linear term in velocity derived by the rotation of the frame

on a moving particle, perpendicular to its motion.

• B term: Euler force, present in frames characterised by varying angular velocity.

• C term: Centrifugal force, it acts perpendicular to the rotation axis and to the

position vector, pushing the particle out of the curved trajectory.

10
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• D term: translational force, it has the same magnitude but different direction

than a force applied to the frame with same acceleration.

All these forces are present due to the non-inertial nature of the frame considered, the

body frame. The the motion of the frame, even if they are not forces directly applied to

the internal model, affect the relative equations of motion.

To define the evolution of the single degrees of freedom, when Lagrangian are used,

it is needed to complete the derivation in a scalar way, starting from the vectorial

Lagrangian in 2.3. For each of the degrees of freedom there is one describing equation,

coupled with others degrees of freedom. To compute resulting force can be necessary

to shape the position vector deriving from one or more DOF.

2.3.1 Energy Evaluation Moving Frame

When considering the energy stored of the system in the accelerated frame, part of

the potential energy associated with the pseudo-potential energy as −ma, that acts
as a gravity potential in the body frame, actually appears within the kinetic energy

expression, as it contributes to the velocity of the mass. In the same way, the so-called

centrifugal potential energy introduces additional terms directly into the kinetic energy

Ek. The only terms which remain ’proper’ potentials are the elastic/surface/thermal

potential energy and the gravitational field influence on the mass, even though its

magnitude may be very small. However, in a non-inertial frame, the total energy is

no longer a constant of motion as it is in an inertial reference frame. While in the

inertial frame K0 the condition dE0

dt
= 0 holds in absence of dissipation,for the energy

expressed in the non-inertial frame E(K) a more detailed analysis is required.

To evaluate the energy and its change between frames it is convenient to take into

consideration as not inertial frame, a frame rotating with constant angular velocity

Ω = const and with no translational acceleration, to ease the computation without

reducing the validity of the results.

For this case, the Lagrangian in 2.3 simplifies to

L =
1

2
mv2 +mv · Ω× r +

1

2
m(Ω× r)2 − U (2.15)

11



CHAPTER 2. THEORETICAL BACKGROUND

and the derived equation of motion is

m
dv

dt
= 2mv × Ω +mΩ× (r × Ω)− ∂U

∂r
(2.16)

While, when considering energy,it can be derived from the linear momentum as E =

p · v − L where the linear momentum p is

→ ∂L
∂v

= mv +mω × r (2.17)

Hence the energy is expressed as

E = mv2 +mv · Ω× r − 1

2
mv2 −mv · Ω× r − 1

2
m(Ω× r)2 + U

=
1

2
mv2 − 1

2
m(Ω× r)2 + U

(2.18)

The second term of this expression is added due to the rotation of the frame and it is

a contribution of centrifugal potential energy. The velocity of a particle in frame K is

v0 = v + Ω× r, and the linear momentum becomes

p = mv +m · Ω× r (2.19)

p0 = mv + Ω× r = mv0 (2.20)

The linear momentum remains constant in different frames p0(K0) = p(K). When

considering the angular momentum the derivation brings to an equivalent result

M0 = r × p0 (2.21)

M = r × p (2.22)

⇒M0 =M (2.23)

However, it is important to underline that E0 6= E, therefore it is not possible to

use the energy conservation as indicator of physical correctness, because in a non

inertial frame, evenwithout dissipative terms, the energy is not constant. In particular,

considering 2.18, and substituting in it v = v0−Ω× r the new expression of the energy

12
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in frameK is

E =
1

2
mv20 + U −mv0 · Ω× r

= E0 −mv0 · Ω× r

(2.24)

that results in the transformation law from an inertial to a non inertial frame

E(K) = E0(K0)−M · Ω (2.25)

So, to consider the energy as term of verification of the physical meaning of the

system some steps must be done to adapt it to the frame of work, e.g adding the

extra term referring to angular momentum when analysing the body frame. This is a

useful derivation since many simulations have been done considering only the inputs

of acceleration and rotation of the tank in the sloshing model, without considering

the complete coupled equations. Otherwise the velocities and acceleration can be

translated in inertial frame where energy conservation still holds.

2.3.2 Related Work

As historical component, liquid sloshing in spacecraft propellant tanks has been

extensively studied since the early days of spaceflight. The initial work by Abramson

[1] presented one of the first systematic analyses of the dynamic behavior of liquids in

moving containers. Building upon this, Dodge and Garza [9] investigated low-gravity

sloshing in spherical, ellipsoidal, and cylindrical tanks, providing empirical scaling

laws still widely referenced.

Further contributions by Dodge and collaborators [8, 10] refined these models,

leading to the development of equivalent mechanical models, which approximate the

sloshing liquid as discrete masses with spring–damper connections. These analytical

approaches remain essential for control-orientedmodeling due to their computational

efficiency [14, 15]. Instead, with the advancement of computational capabilities, high-

fidelity numerical simulations have been adopted to study sloshing in low- and micro-

gravity environments for the specific case treated but usually not generalizable. In

particular, Yang and Peugeot [22] extracted sloshing parameters via CFD to enhance

spacecraft attitude dynamics models, while Hahn et al. [12] analyzed nonlinear

propellant sloshing and its effects on AOCS. Luppes et al. [19] also performed

13
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numerical simulations of liquid motion under microgravity.

Recent approaches combine analytical models with CFD-derived coefficients for

accuracy and real-time feasibility, as discussed by Bourdelle et al. [3] and Alazard et

al. [2].

Beyond classical sloshing, low-gravity propellant management often involves capillary

and multi-phase phenomena. Foundational work by De Gennes et al. [6] describes

drops, bubbles, and wetting dynamics. Capillary and methods for propellant

positioning have been explored by Collicott [4] and Hart et al. [13]. Bubble motion

in spherical tanks was analyzed direct numerical simulation by Dalmon et al. [5], and

oscillating drop techniques were revisited for low-gravity applications by Egry et al.

[11]. Experimental campaigns have historically provided critical validation for sloshing

models. Notable examples include the hydrazine tank slosh studies byKana andDodge

[16] and the COLD-SAT cryogenic experiments [NASA_Cold-sat]. Drop tower and

parabolic flight campaigns remain relevant for characterizing transitions from normal

gravity to microgravity conditions [18].

Finally, recent research focuses on hybrid analytical–CFD models, multi-mode

nonlinear sloshing, and the inclusion of thermo-capillary and cryogenic effects for

long-duration missions. These trends aim to bridge the gap between the fidelity of

CFD and the computational requirements of onboard control models.
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Methods

In order to describe themotion of fluidwithin a spacecraft tank, several aspectsmust be

considered. Parameters such as the physical and chemical properties of the liquid, the

geometry of the container, the type of external inputs applied to it, and the presence of

devices inside the tank are just some of the factors influencing the dynamics. The fluid

behavior follows the governing equations of fluid dynamics, obeying the conservation

of mass, momentum, and energy, within the boundary condition of no penetration

through the tank walls. These boundaries differ for each geometry, shaping the unique

response of the system.

Numerical simulations and computational methods based on these equations achieve

high-fidelity results. Post-processing these results allows for extraction values of key

quantities then possibly integrated with further analysis. Examples of data extraction

are the forces acting on the container walls, the excursion of the centre of mass

(COM), and other parameters like the shape and size of the liquid-gas interface. The

former group is essential for computing the spacecraft’s overall dynamics and both

the static and dynamic inertia of the subsystem and the whole structure. The latter,

instead, is particularly important in describing the surface energy stored in the fluid

during mission phases where capillary forces dominate over inertial and gravitational

ones.

Moreover, modal analysis, often conducted using FEM, reveals the oscillation modes

of the fluid. This information must be taken into account in the control algorithms

implemented in the AOCS software to avoid resonance with main structure vibration

modes or those of appendages (e.g., deployable booms or solar panels) and with the
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control frequencies.

However, such numerical analyses are too computational expensive to be executed

in an AOCS simulation, for which operational efficiency is an important aspect of

evaluation. For this reason, data from experiments and simulations are gathered and

processed offline to develop alternative, reduced-order models capable of delivering

the necessary information to the onboard software. This knowledge is then used

to perform active control via reaction wheels and thrusters, mitigating disturbances

caused by fluid motion.

Based on these premises, the concept of the mechanical equivalent method is

introduced. By applying the fluid dynamics equations to a general case, the

liquid’s behavior can be represented through a combination of well-chosen kinematic

constraints and basic mechanical components.

This approach was originally developed by Abramson in [1] and has since been used in

numerous studies, often validated through comparison with analytical solutions from

fluid dynamics equations andnumerical simulation results. Themethod offers a robust

framework for modelling different sloshing behaviors under varying gravity levels

and tank excitation profiles. The most relevant cases are presented in the following

sections.

3.1 Justification of Mechanical Equivalence

When the precise fluid shape and detailed behavior are not a priority, the fluid motion

can be represented using an equivalent mechanical model, which is easier to simulate

andmodify. This is precisely the case for sloshing behavior handled by AOCS software.

The framework itself requires, as inputs from the slosh model, the forces and torques

generated on the tank, the mass distribution of the fluid (to compute inertia), and

the oscillation modes that might interact with other parts of the structure. All this

information is fed to the control algorithm to dampen internal disturbances caused

by fluid motion. The necessary knowledge is more related to the overall motion and

mass displacement than to the precise surface configuration of the fluid, with some

additional data on higher eigenmodes.

To accurately capture dynamic behaviors such as oscillations, forces, and dynamically

changing inertia, the mechanical equivalent cannot rely solely on a rigid-body
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representation of the fluid. This is demonstrated in [1] which considers a cylindrical

tank with coordinates (r,θ, z) and its longitudinal axis directed along +z. The liquid

reaches the height h , partially filling the container.

The velocity potential of the liquid Φ satisfies Laplace’s equation:

∇2Φ = 0 (3.1)

with boundary conditions at the tank walls:

∂Φ

∂n
= Vn (3.2)

where Vn is the normal component of the tank velocity. Considering the potential, at

the tank wall on the normal (n) direction it is constraint to have the value of Vn . At the

free surface the potential follows

Φ̈ + g
∂Φ

∂z
= 0 (3.3)

The potential can be considered as the sum of two components Φ = Φ1 + Φ2 where

Φ1 satisfies only Equations 3.1 and 3.1, while the Φ2 represents the static behavior of

a fully filled tank, subjected to the unsteady pressure from Φ1. In this case, Φ2 at the

tank walls satisfies
∂Φ2

∂n
= 0 (3.4)

as homogeneous boundary condition, and for the free surface condition satisfies

Equation3.1. This can be rewritten as

Φ̈2 + g
∂Φ2

∂z
= ṗ(t) = −Φ̈1 − g

∂Φ1

∂z
(3.5)

Assuming that the tank is a rigid body, with x0 being its time-varying displacement,

the potential Φ1 can be written as

Φ1(r, θ, z, t) = ẋ0ϕ1(r, θ, z) (3.6)

linking the fluid motion directly to tank motion, consistent with Equation 3.1.

Similarly, Φ2 can be expressed in terms of the ordinary sloshing mode ϕ2,m and the
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coefficients gm(t):

Φ2(r, θ, z, t) = Σ∞
m=1ġm(t)ϕ2,m(r, θ, z) (3.7)

Substituting into Equation 3.1 and assuming ∂Φ1

∂z
= 0 at the free surface for the type of

motion considered:

g̈m + ω2
mgm = Amẍ0 (3.8)

Here an oscillating dynamics becomes evident, indeed ωm is the natural frequency of

them-th sloshing mode and Am is a constant.

In order to compute the forces and torques on the tank walls, the pressure must be

integrated over the relevant area. Pressure appears in Equation 3.1 bounded to the

tank motion as

ẍ0ϕ1 + Σ∞
m=1g̈mϕ2,m (3.9)

showing that two contributions are necessary: a rigid-body motion term and a more

complex oscillatory term that a rigid-body analogy alone cannot represent. Therefore,

only when all g̈ terms are directly proportional to ẍ0, the rigid body analogy suffices. In

general, however, mechanical components such as spring-mass systems or pendulums

must be included, with parameters chosen to satisfy the governing equations. This

analysis is valid for rigid containers; elastic or deformable tanks would require

additional terms and modified boundary conditions, which are beyond the scope of

this thesis.

Several advantages can be gained from the use of

mechanical equivalents. Visualization is greatly simplified, allowing AOCS engineers

to work with equations and tune parameters without handling complex fluid dynamics

directly. The choice of the parameters and the relevance of the elements includedmust

be mentioned. Indeed, including allm eigenmodes, each with its oscillating massmm,

wouldmatch the total fluidmass butmay introduce unnecessary complexity relative to

the marginal improvement in accuracy. Careful selection of the most relevant modes

balances model fidelity with usability.

In general, the setup can be represented as in Figure 3.1.2, where the main parameters

are represented. The mass of the liquid is divided into a static mass m0, cantilevered

to the spacecraft, and sloshing massesmi, where i denotes the i-th sloshing mode. The

sum of all these components, the pendulums and the static mass, yields the total fluid

mass. However, in practical models used for real analyses, this balance is often not
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strictly maintained due to the relative significance of higher sloshing modes compared

to the first. In fact, the mass assigned to the first sloshing mode,m1, is typically much

larger than that associated with the second eigenmode,m2. For control algorithms and

oscillation analysis concerning their impact on the spacecraft structure, it is generally

sufficient to consider only the first sloshing mode to achieve a realistic model. Only

in cases where resonance occurs at higher modes, their contribution becomes non-

negligible. In the context of spacecraft dynamics and typical maneuvers, this situation

almost never arises.

Figure 3.1.1: Relevance of second sloshmodes compare to the first sloshmode. Credits
to Abramson, 1966.

In Figure 3.1.1, the ratio of the sloshingmass assigned to the firstmode to that assigned

to the second mode is shown, expressed as a fraction of the total fluid mass. At low

filling levels (or, in this case, low fluid height), the first sloshing mode accounts for an

increasingly larger fraction of the total mass. This indicates that the fluid’s behavior

becomes predominantly non-static. In contrast, the second mode, which has at least

an order of magnitude less mass than the first, remains almost constant with respect

to the fill ratio, as does its contribution to the overall dynamics. Higher-order sloshing

modes are associated with exponentially smaller masses, making their effect negligible

for the purposes of an AOCS model.

In this thesis, in agreement with several works [Dodge_1, 1, 15], the sloshing model

considers only the first mode. The mass assigned to this mode,m1, varies with the fill

ratio and the geometry of the tank, while the static mass is obtained by assigning to it
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all the smaller masses of the higher modes:

m0 = mtot −m1 (3.10)

The pendulum model has the additional advantage of naturally incorporating the

effect of gravity into its dynamics, so that it evolves intrinsically with the different

phases of the mission. The parameters that need to be determined are the length of

the pendulum rod L, the distance of the pendulum hinge from a reference point h1

(usually the center of the tank), and the displacement of the static mass from the same

reference point h0. These parameters can be derived from experiments or simulations

with a few adjustments. Following the determination of the pendulum parameters, the

Figure 3.1.2: General mechanical equivalent

h/2

h0

h/2

m0

m1

L

h1

O

ψ

z=0

sloshing mass m1 can be derived either from simulations or from experiments, where

the response of the fluid to known force inputs on the tank is analyzed. The sloshing

mass depends on both the quantity of fluid and the tank geometry. As shown in various

studies [1], when the tank is nearly full, e.g., for fill ratios above 95%, the fluid can

be satisfactorily represented by a static concentrated mass located horizontally at the

geometric center of the tank. As the fluid volume decreases, the relative importance of

the sloshing mass increases. However, in every set-up it is essential that the geometric
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center of the liquid remains unchanged in the equivalent model with respect to its

initial value. This is ensured by positioning the static mass below the center of mass

according to:

h0m0 = (h1 − L1)m1 (3.11)

The lenght of the pendulum L1 and its natural frequency ωn are related by

ωn =

 
L1

g
(3.12)

Thus, knowing the resonance frequency of the sloshing fluid, it is possible to

determine both L1 and ωn. Instead, the position of the hinge point h1 can be derived

experimentally by considering themaximumangularmomentumand force on the tank

when the motion is initiated and then rapidly stopped. This procedure is based on

the definition of angular momentum with respect to the hinge point. An indicative

evolution of h1 with the fill ratio is shown in Figure3.1.3. where the dependence on the

fill ratio is expressed using a more general tank geometry relation.

Figure 3.1.3: Hinge point evolution with fill ratio, expressed as ratio to the tank height.
Credits to Abramson, 1966.

In general, deriving this parameter requires knowledge of the exact tank geometry,

the type of fluid, and any potential internal devices. For the study conducted in this

thesis, one of the objectives is to create a generalized model that can be applied to

different projects where the AOCS subsystem may operate. For this reason, some

analytical results are based on placeholders for the tank geometrical characteristics

(height, width, and length for rectangular shapes; diameter for cylindrical tanks; semi-

major and semi-minor axes for oblate shapes). These sets of parameters are based on

the assumption that the tank is clean, without internal hardware or baffles, and that

the liquid is inviscid.
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Hereinafter, the graphics and plots representing the evolution of the parameters are

presented. The numerical work of this thesis is based on parameters from a previous

OHB project, which included a CFD analysis of the sloshing.

In the following sections, parameters for different shapes are presented.

3.1.1 Rectangular Tank

Figure 3.1.4: Rectangular tank parameters

For rectangular tanks the parameters can be derived following the presented function

taken from literature and that can be directly implemented in Simulink models, see

Table3.1.1.

Table 3.1.1: Spring-Mass Analogy Model Parameters

Parameter Expression

L1
w

3.68
coth(3.68

h

w
)

m1 mT

( w

3.87h

)
tanh

3.14h

w

m0 mT −m1

l1
w

1.57
tanh

1.57h

w

l0
h

2
+
m1

m0

(
h

2
− l1

)
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Figure 3.1.5: Cylindrical tank parameters

3.1.2 Cylindrical Tank

Also in this case, results are applied to the model from literature and can be inputted

directly as in Table3.1.2

Table 3.1.2: Pendulum Analogy Model Parameters for Cylindrical Tank

Parameter Expression

L1
d

3.68
coth(3.68

h

d
)

m1 mT

(
d

4.4h

)
tanh(3.68

h

d
)

m0 mT −m1

l1
d

7.36
csch(7.36

h

d
)

l0
mT

m0

[
h

2
− d2

8h

]
− (l1 + L1)

m1

m0

3.1.3 Spheroidal Tank

The results derived for spherical and spheroidal tanks include derivation of the fluid

height and its relation with other parameters as it is not straight forward as in the

precedent cases. Derivations are done for general spheroids, for which a sphere is a

particular case.

For what regards spheroids, data aremore sparse and functions describing parameters

have not been computed generally. However, trends describing the evolution of each

parameter are gathered from different literature sources (mainly [1] and [Dodge_1]).

The relevant plots are digitalised and fitted to shape appropriate functions. Many
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parameters had to be adapted to the analysis and handling of this model and the

relative describing function are presented below 3.1.43.1.5. It is important to notice,

that many studies have been conducted tracking fluid height instead of fill ratio (which

is the ratio of volumesfillr =
V (hfluid)

Vtank
). This aspect does not impact the use of

results for rectangular and cylindrical tanks since the ratio of hfluid/htank is the same

as V (hfluid)/Vtank. However, when considering spheroids this relation does not hold

anymore, and it is needed to define the analytical relation between fluid height and

fill ratio. Indeed, many simulation environments uses fill ratio as input to the slosh

model, therefore it is valuable to make this model accessible. The defining function for

a general spheroid is:
x2 + y2

a2
+
z2

c2
= 1 (3.13)

For a tank filled until the height h, the radius of the interface as h is:

r(h) = x2 + y2 = a

…
1− z2

c2
(3.14)

and the area is consequently A(h) = πa2(1 − z2

c2
) The volume occupied when the fluid

height is h comes from the integration of the area A(h) over z for z ∈ [−c;−c+ h], and

it results in:

V (h) =
[
z − c3

3c2
]−c+h
−c ; (3.15)

V (h) = πa2
[
− c+ h− h− c

3c3
+

2c

3

]
(3.16)

Considering now the ratio V (h)/Vtank where Vtank = 4
3
πa2c, by definition called fill

ratio:

fillr = 3η2 − 2η3 (3.17)

To derive this relation the substitution η = h/2c has been implied. Considering the

classic substitution for cubic function η = (u + 1)/2, this relation can be analytically

solved to get the inverse relation. The final functions that from filling ratio gives fluid

height for a spheroid is:

h(fillr, htank) =
htank
2

·
1 + 2cos(1

3
arccos(1− 2 · fillr) + 4π

3
)

2
(3.18)

This formula is of course valid for both oblate and prolate spheroids. Here are

presented the function describing the relevant parameters for both this shapes. The
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variable h here is made dimensionless as h = H/0.5htank whereH is actual fluid height

in the spheroidal tank.

3.1.4 Spherical Tank

Figure 3.1.6: Spherical tank parameters

As particular case of what presented above, the spherical tank case can be described by

parameters in the following table.

Table 3.1.3: Pendulum Analogy Model Parameters for Spherical Tank

Parameter Expression
L1 R · (−0.6145h2 − 0.3323h+ 0.9828)

m1 ρπh2(R− h/3)·
·(0.01975− 0.007715h+ 8 · 10−4h2 − 1.43 · 10−5)

m0 mT −m1

h1 + htank/2 R · (−6.618 ∗ 105h+ 1.004)

h0 + htank/2 R · (8.43 · 10−3 · e−4.217h + 1.065e−0.4247h)

ω1

√
R/g(1.319e0.1832h + 0.0046e6.804h)

3.1.5 Oblate Tank

Hereinafter are presented the results for an oblate spheroid.
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Figure 3.1.7: Oblate tank parameters

Table 3.1.4: Pendulum Analogy Model Parameters for Oblate tank

Parameter Expression
ω1 0.6817e0.3863h

L1 aeff/ω
2
1

m1 mT (−0.1009h3 − 0.0234h2 − 0.06943h+ 09994)

m0 mT −m1

h1
htank

2
(−1.845h+ 3)

hcg
3
4
htank

2

[ (2−2h/htank)
2

3−2h/htank

]
h0 hcg +m1/m0(h1 + hcg)

3.1.6 Prolate Tank

Hereinafter are presented the result for a prolate spheroid.

Figure 3.1.8: Prolate tank parameters

[Rattayya, 1965]

Finally, another useful aspect of substituting the fluid with a mechanical equivalent

is the possibility of easily including elements to represent damping, as well as its

evolution under different fluid conditions, depending on fluid volume, direction

of excitation, or varying external environment. This is typically implemented, for

example, with linear dashpots tuned as needed and added to the spring-mass or
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Table 3.1.5: Pendulum Analogy Model Parameters for Prolate tank

Parameter Expression
ω1 1.343e−0.09522h + 0.004815e2.906h

L1 aeff/ω
2
1

m1 mT (0.18h
2 − 0.818h+ 0.952)

m0 mT −m1

h1
htank

2
· (−0.1272h3 + 0.3624h2 + 0.2852h− 0.6867)

hcg
3
4
htank

2

[
(2−2h/htank)

2

3−2h/htank

]
h0 hcg +m1/m0(h1 + hcg)

pendulum elements.

3.2 Damping

Tracking the total energy of the system can be a useful tool for assessing the reliability

of a model. However, considering only the kinetic energy and gravitational potential

energy of the masses in an inertial frame is not entirely accurate when the reference

frame is initially attached to a fluid. The fluid nature implies complication on many

aspect of the dynamics and among this is also its particle interaction in fluid-fluid

and fluid-wall contact. With rare exceptions, fluids are viscous; they resist motion

and dissipate part of the system’s energy through viscous friction. This phenomenon

applies equally also to the liquids contained in propellant tanks.

When sloshing motion is excited, the oscillation amplitude undergoes a gradual decay

due to damping. For most common fluids, the damping ratio is relatively small,

typically on the order of 10−2.

Modeling damping in a real tank configuration is a highly complex problem, and

no complete analytical solutions have been reported in the relevant literature.

Nevertheless, several experimental studies have been conducted to determine damping

values for specific cases. These studies indicate that the damping ratio depends on

factors such as liquid height and tank geometry. In practice, it is often evaluated

either experimentally, once the other system parameters are known, or via numerical

simulation.
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A common experimental approach involves applying a known impulse to the system.

In this case, all parameters in the governing equations of motion are known except for

the damping ratio, which can then be identified from the measured response.

The effect of computing the decreasing of the oscillations’ amplitude is a way to

determining damping ratio. Indeed, the decrease in amplitude can be representedwith

a logarithmic decrement as

δ = ln
Max amplitude oscillation (cycle n)
Max amplitude oscillation (cycle n+1)

(3.19)

In linear systems, since the displacement is proportional to the restoring force and its

squared value is proportional to the total energy, the logarithmic decrement can also

be expressed in terms of force or energy decrement. From the logarithmic decrement,

the damping factor can be deducted from

δ = 2πγ = 2π
c

cc
(3.20)

Where c is the actual damping coefficient of the system with dimensions [N·s/m] for
linear damping, or [N·m·s/rad] for rotational damping. While cn is the critical damping

coefficient, which is the damping at which the system transitions from oscillatory to

non-oscillatory behavior.

Although the damping ratio is small, its contribution to the dynamics of the chosen

pendulum model remains significant and should be included. Given its generally

acknowledgedmagnitude, a linear approximation is typically sufficient. Consequently,

a damping term is introduced either as a linear dashpot or as a torsional component,

depending on the specific form of the model. This approach is valid under the same

assumptions for which fluid motion can be represented by the dynamics of a viscously

damped single-degree-of-freedom system.

Experimental and numerical studies on two oblate tanks—available from different

sources—show good agreement in their reported values of the damping ratio.

In the absence of simulation results tailored to the specific project under investigation,

it is therefore reasonable to adopt, as an initial estimate, the values extracted from such

studies when available. Therefore, in Table3.2.1 functions describing the evolution

of fill ratio for high-g cases in different tanks is presented. The results are fitted

functions combining experimental or analytical results from different sources with
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agreeing results[8][15][1][10] and adapting them to the framework used in this project.

Unfortunately, no data were covering the oblate tank case, that, however, can be

approximated with a cylinder with same proportions.

Table 3.2.1: Damping ratio ζ for different shapes

Shapes Expression

Cylindrical (5.538
(
h
R

)2 − 8.948 h
R
+ 4.199)

(
ν

R1.5√aeff
0.5
)

Rectangular
(

ν
w1.5√aeff

)0.5
Spherical (1.6

(
h
R

)2 − 0.92 h
R
+ 0.45)

(
ν

R1.5√aeff

)
Oblate (0.9516

(
h
2b

)5 − 0.9011
(
h
2b

)4 − 0.7354
(
h
2b

)3
+

+1.221
(
h
2b

)2 − 0.5327 h
2b
+ 0.08837)

(
ν

R1.5√aeff
0.5
)

Where the damping is function of fluid height (the derivation of the relation fill ratio-

fluid height is presented in the previous sections) and shape characteristic dimension:

radius R for cylindrical and spherical tanks, w width for rectangular tanks, b semi-

minor axis for oblate tanks.

The total damping of a fluid during excitation can also be increased through

modifications to the tank geometry. Examples include the insertion of metallic baffles,

elastic bladders, or other internal devices designed to dissipate energy and suppress

sloshing amplitudes.

In the present work, damping is considered solely as a result of fluid viscosity.

However, many experimental studies report data for configurations that also include

internal hardware within the tank. To account for such effects, the plots and trends

used in the damping analysis can be readily replaced with updated datasets reflecting

the increased damping ratio. These updated values can then be incorporated into the

analysis without requiring any changes to the underlying mechanical model.

The hardware employed for this purpose can vary in shape, thickness, and material,

and in some cases may achieve near-complete suppression of oscillations. These

devices can be either fixed or movable. A common example of fixed devices is baffles,

which are rigidly attached to the tank walls and may differ in geometry and placement

depth. Two frequently used configurations are annular and cruciform baffles. One

of the most influential design parameters is baffle thickness, which tends to increase

damping but also adds weight to the system. Examples of movable devices include
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elastic diaphragms or expulsion bladders, in which the thickness of the material again

plays a key role, though generally with less weight penalty compared to metallic

components. Broadly speaking, the principle behind these devices is to either limit

the motion of the free surface or reduce the available free volume in the tank, while

preserving the overall geometry so that the global dynamics remain comparable.

Sloshing in sectored tanks presents additional complexity and is beyond the scope of

the present study.

Figure 3.2.1: Damping in oblate tank with cruciform baffles, Abramson,1966

Figure 3.2.2: Damping in oblate tanks, Abramson,1966

As an illustrative case in Figure3.2, a graph showing the effect of cruciform baffles in

an oblate tank is presented to facilitate comparison and to evaluate the effectiveness of

this type of device. While in Figure3.2.2, it can be seen the damping ratio for an oblate
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tank without internal hardware. In this example, the damping ratio increases to nearly

0.1 for a half-filled tank—this is particularly significant since viscous damping ratios

typically reach their minimum at this fill level. Under these conditions, the damping

has increased from approximately three times its original value to nearly an order of

magnitude higher.

3.3 Force Influence - Bond Number

The physical situation described in the preceding sections changes significantly when

a tank filled with fluid experiences an acceleration several orders of magnitude

lower than g0, the average gravitational acceleration at Earth’s surface. Under such

conditions, the behavior of the fluid no longer follows the dynamics described above,

as new forces become dominant. In particular, surface tension begins to outweigh both

gravitational and inertial forces. This effect manifests primarily at the free surface,

producing phenomena collectively referred to as capillarity.

The loss of dominance of body forces occurs when the net acceleration acting on

the system—whether gravitational or inertial—decreases gradually or abruptly. This

reduction does not require the acceleration to reach exactly zero; in fact, achieving

a perfect null acceleration would necessitate a spacecraft being located far from any

massive body exerting an appreciable gravitational influence, a scenario infeasible

for the configurations considered here. In practice, weightlessness is achieved when

the vector sum of gravitational acceleration and the body’s own acceleration is zero.

Under these conditions, the system is said to be in a state of free fall or apparent

weightlessness.

Experiments aimed at studying fluid behavior in such environments are typically

performed in drop towers or during parabolic flight campaigns. However, complete

weightlessness is not always the most informative test condition. Experimental setups

in microgravity—defined here as accelerations in the range of 10−3 to 10−6 m/s2—often

yield more relevant insights for spacecraft applications, as they more closely replicate

the low but nonzero acceleration levels encountered in orbit.

It is important to note that, aside from isolated studies, experimental data under these

conditions remain limited. The complexity arises from the fact that fluid behavior

depends simultaneously on multiple parameters, including tank geometry, fill ratio,
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and relative acceleration. Consequently, it is not feasible to base a general analysis

solely on experimental observations. Nevertheless, by relying on capillarity theory and

the use of suitable dimensionless parameters, it is possible to predict fluid behavior for

a given set of conditions. These predictions can then be incorporated into themodeling

process, enabling the construction of a sufficiently representative model even in the

absence of extensive experimental data.

3.4 Dimensionless Parameters

As discussed in the previous section, the relative influence of gravitational, inertial, and

capillary forces can vary significantly during a typical spacecraft mission, depending

on the operating mode and acceleration environment. Each of these forces may

dominate at different phases, leading to markedly different fluid behaviors and

interface shapes.

To identify the prevailing physical effects in a given condition, dimensionless

parameters are often used. These parameters allow one to compare the relative

magnitude of different forces, thereby indicating which effects can be neglected and

which must be considered in the analysis of liquid propellant sloshing.

Two fundamental dimensionless numbers are:

• We = ρV 2L
σ
, Weber number describes the relative importance of inertial and

capillary forces.

• Fr = V 2

gL
, Froud number describes the relative importance of inertial and gravity

forces.

In the framework of a space mission, Weber number is mostly influenced by thrusting,

so whenever the spacecraft it is not maneuvering, the environmental conditions (e.g.

gravitational force) determine which dominance range the system falls into. It is

important to notice how the scaling dominance of each force-type on the singular case,

depend on the dimension of the tank and the fluid parameter greatly. For instance a

smaller tank, given equal thrust, will have greater area for capillarity dominance than

a bigger tank. Because of this, the most extensively used parameter, in the analysis of

slosh, is the ratio of the two presented above: the Bond number.
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Bo =
We

Fr
=
ρgL2

σ
(3.21)

TheBondnumber represents the ratio between gravitational forces and surface tension

forces. For spacecraft attitude dynamics and control, these two effects are of primary

interest, as they typically alternate in dominance depending on the operational mode

of the system.

Figure 3.4.1: Division of forces predominance based on dimensionless parameters.

The graph reported in Figure 3.4.1 illustrates how the state of the fluid can be

qualitatively classified according to the values of key dimensionless parameters. The

Bond number, in particular, has been examined experimentally in tanks of various

geometries and sizes. Its value provides insight into which forces dominate and,

consequently, which physical effects are most relevant to the analysis. A commonly

cited reference point is Bo = 1, at which the gravitational and capillary forces are

of comparable magnitude. Empirical studies have shown that gravity-dominated

behavior is generally observed for Bo ≥ 10, while capillarity-dominated behavior

is observed for Bo ≤ 0.1. Examples of gravity-dominated regimes include large-

amplitude oscillations with frequencies dependent on gravity level. In contrast,

capillarity-dominated regimes may exhibit phenomena such as liquid climbing along

the container walls and increased effective inertia.

In practice, the Bond number is primarily computed to assess how external conditions

influence fluid motion in a given setup. This assists in selecting appropriate sensors

and monitoring strategies for both simulations and physical experiments. However,

thresholds reported in the literature are not typically used as strict criteria for modular

dynamic modeling.

33



CHAPTER 3. METHODS

In the present work, the Bond number is employed as a key indicator to classify

and analyze the different dynamic regimes that a spacecraft propellant tank may

encounter during its mission profile. This parameter provides a physical basis for

determining whether gravitational or capillary forces dominate the liquid behavior

and, consequently, for selecting the most appropriate modeling approach for each

case.

Based on this framework, three representative modes have been identified and

modeled separately, reflecting the range of conditions that may arise in actual

operational scenarios:

• High-accelerationmode: this regime corresponds to conditions inwhichBo� 1,

and gravitational forces dominate over surface tension effects. It typically occurs

during thrusting or strong maneuvering phases. The sloshing dynamics are

modeled using the classical mechanical pendulum analogy described in previous

sections, which effectively captures large-amplitude oscillations driven primarily

by gravity.

Figure 3.4.2: Fluid and mechanical representation of high-g behavior

• Low-accelerationmode: this regime corresponds to conditions in whichBo� 1,

and surface tension is the primary driver of fluid configuration and motion.

Such situations are common during long-duration coasting or orbital operations

with very low residual accelerations. Here, a capillarity-based model has been

developed to capture the characteristic redistribution of the liquid along tank

walls, the alteration of the free-surface shape, and the resulting variations in the
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fluid’s inertia properties. This model focuses on how these changes affect the

spacecraft’s mass distribution and attitude dynamics.

Figure 3.4.3: Fluid and mechanical representation of low-g behaviour

• Transitional or unstable configurations: these modes occur when Bo is near

unity or when the system is perturbed from either a gravity- or capillarity-

dominated state. Under certain disturbances, the liquid mass may break into

distinct configurations that are however unstable.

Figure 3.4.4: Fluid and mechanical representation of a drop transition configuration

Among transitional modes, particular attention is given to drop configurations, where

a portion—or, in low fill conditions, nearly the entirety—of the liquid detaches from

the main bulk and floats freely within the tank. This can lead to substantial and rapid

shifts in the spacecraft’s inertia and center of mass. In this state, the free-floating

liquid does not directly respond to tank accelerations or store angular momentum
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until recontact with the tank wall. Such configurations are generally transient, with

the fluid eventually rejoining the main bulk or adhering to a wall, in accordance with

the principle of minimum energy.

Instead, bubbles of air, where pockets of gas form within the fluid have not being

modelled as independentmode. This is done under the assumption that their dynamics

follows the same governing principles as the surrounding liquid, with the gas volume

treated as part of the free ullage. In capillarity-dominated regimes, bubble geometry

is represented implicitly by the curvature of the free surface. If a bubble migrates to

another region of the tank, themodel adapts to the new configurationwithout requiring

additional equations.

By separating these regimes, the analysis can more accurately represent the physical

behavior of the propellant in varying operational conditions. The following sections

present the detailed modeling approach for each regime, along with their implications

for spacecraft attitude and control.

An initial definition of the proposed framework can be seen in Figure3.4.5. The

concept developed in this thesis is to provide a systematic method for predicting the

fluid behavior inside the tank under different operating conditions, using only the

information already available to the AOCS framework at any given time (e.g IMUs).

By identifying the prevailing fluid behavior, the appropriate dynamic model can be

selected for controller design or, alternatively, just to analyse the effects of maneuvers

and external disturbances on the spacecraft. The switching mechanism is based on

the Bond number, which determines the current mode of the fluid. Each mode is

associated with a distinct set of dynamics, derived from experimental observations and

supported by analytical fluid dynamics considerations. In theory, the combination

of influencing parameters, such as geometry, acceleration level, fill ratio, and fluid

properties, could lead to an infinite variety of configurations. In this work, the problem

is reduced to a minimum of three representative dynamic modes:

Pendulum mode (Mode 1) and capillarity mode (Mode 2) represent two stable

configurations of the fluid inside the tank. The fluid settles into one of these twomodes

depending on the level of acceleration, the tank geometry, and the surface tension σ

of the fluid. While surface tension values remain relatively similar across the common

propellants in use, the dependence on gravity level and geometrymeans that two tanks

with identical shape and fill ratio but different sizes could be in opposite modes under
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the same gravity level.

In transitional states - such as when an abrupt change in effective acceleration occurs,

for example when switching from an idle state to a maneuvering (thrusting) state — a

third configuration, referred to as drop mode (Mode 3), is considered. In this mode, a

portion of the liquid may detach from the main mass and float freely within the tank.

The drop shape follows the minimum-energy principle, forming a sphere to minimize

surface area while floating, and then further reducing surface area upon attachment

to a wall. From this transient state, the fluid eventually converges to either Mode 1 or

Mode 2. Drop mode can also arise from perturbations in Mode 2, particularly under

very low gravity levels, where small disturbances can cause portions of the liquid to

detach and behave independently before rejoining the main mass.

Figure 3.4.5: Bond number-based switch condition

The equations of motion for the three modes are implemented in Simulink, with each

mode encapsulated in its own subsystem containing the parameters required for its

specific dynamics. The Bond number is computed in a higher-level block and serves as

the switching condition to activate the appropriate mode.

This architecture allows the simulation to be directly integrated into AOCS analysis.

The model receives as inputs:

• measured acceleration in the body frame;

• geometry of the tank;

• fluid properties;

• fill ratio.

From these inputs, it produces outputs reflecting the actual dynamics the fluid

would experience under those exact conditions. This enables results grounded in
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experimental and analytical knowledge without requiring real-time CFD or other

computationally expensive fluid dynamics solvers, thus offering a computationally

efficient yet comprehensive tool.

Furthermore, because themodel accounts for the distinctive behaviors of eachmode, it

can providemore accurate estimates of static and dynamic inertia, as well as center-of-

mass position—parameters that can vary significantly betweenmodes and are difficult

to capture with a single, unified model.

It is acknowledged that real fluid behavior is influenced by additional factors, such

as tank wall cleanliness, fluid purity, and other subtle physical effects, making it

unrealistic to define perfectly distinct modes in all cases. For this reason, the

current implementation uses mutually exclusive switching conditions as an initial

simplification. In later stages, the framework will incorporate smoother transitions,

allowing multiple modes to be partially active in parallel. This progressive refinement

is compatible with the Simulink implementation and will be detailed in the next

chapter.

3.5 Capillarity Mode

After the pendulum configuration has been presented in the previous sections, with

its analytical and experimental base, here Mode 2 is presented. In capillarity mode,

corresponding to low Bond numbers, the general dynamics derived in the previous

section still applies to some extent. The characteristic velocity remains Lωn. However,

in conditions where surface tension forces dominate, the Froude number Fr is no

longer the governing parameter; instead, the Weber number We becomes the key

dimensionless parameter, as it captures the relative influence of inertial and capillary

forces.

Before detailing the capillarity-dominated model, several important parameters and

concepts must be introduced.

Surface tension arises at the interface between a liquid and a gas. The two phases

maintain a pressure difference ∆P that must be balanced by surface tension for the

interface to remain in equilibrium. According to the Laplace law, for a spherical bubble
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of radius R, this balance is expressed as:

P1 − P0 =
2σ

R
=

4σ

D
(3.22)

For a general curved interface with principal radii of curvature r1 and r2, the pressure

difference is given by:

P1 − P0 = σ

(
1

r1
+

1

r2

)
(3.23)

Surface tension values σ are usually specified for a liquid in contact with air, but they

have been shown to apply with good accuracy when in contact with other gases. In this

work, it is assumed that the values for air provide sufficiently precise results for the

intended analysis.

Another critical parameter is the contact angle θc, defined as the angle between the

tangent to the liquid-gas interface and the solid surface. This angle distinguishes

wetting fluids from non-wetting fluids: wetting fluids have θc < 90◦, while non-wetting

fluids have θc > 90◦, as illustrated by mercury on a solid surface. During motion,

the contact angle may vary due to hysteresis, with different values for advancing

(expanding onto an untouched surface) and receding (retracting on an already wetted

surface) conditions. The contact angle is important because it affects the computation

of surface tension forces, the associated energy, and consequently the shape of the

liquid interface. For practical purposes in this model, it is considered sufficient to

assume θC = 0◦, a common assumption that is valid for most propellants used.

3.5.1 Dynamics and Oscillation Properties

In capillarity-dominated conditions, the natural frequency of the fluid oscillations

transitions from a gravity-based definition:

ω2
n(L/g) = A (3.24)

to a capillarity-based definition:

to be ω2
n(ρL

3/σ) = B (3.25)

where A and B are parameters that depend on the fill ratio and tank geometry.

It is important to note that the expression for natural frequency in low-gravity
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conditions is independent of the actual value of g. This implies that the oscillation

frequency does not vanish simply because gravity is not dominant. Indeed, some

simplifications may treat the fluid in microgravity as nearly solid, due to the effect

of capillarity resisting motion. However, this can be misleading: experimental

observations indicate that when the effective acceleration abruptly decreases, the

fluid oscillates slowly with frequencies ranging approximately from 0.001 Hz to 0.1

Hz, depending on tank geometry and fill ratio. These low-frequency oscillations can

coincide with resonant frequencies of spacecraft structural components, potentially

leading to physical damage or interference with control systems.

The sloshing behavior at highBondnumbers has similar characteristics to the lowBond

number dynamics, but present an additional term to represent the new influence of

capillarity. This can be a torsional spring connected to a pendulum hinge or linear

dashpots. Indeed, at low-Bo conditions, the frequency is modified by surface tension

effects:

Ω =
ω√

(1 + Bo)(σR3
0/ρ)

(3.26)

and results to be strongly bounded to fluid properties as density and surface tension

and not to acceleration.

Figure 3.5.1: Dimensionless slosh frequency, first and second mode, with liquid depth
h > 2R0, Dodge, 1968

For Bo � 1, the natural frequency becomes practically independent of the Bond

number.
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The governing equations for low-gravity fluid sloshing follow a similar pattern as for

high-g sloshing, but now include constraints to preserve the equilibrium contact angle,

which is no longer negligible. The complete derivation is beyond the scope of this

thesis, but can be found in [7]. These equations can be solved analytically using

dimensionless parameters representing tank geometry, oscillation frequency, and

wave amplitude. Solutions are obtained by computing eigenvalues and eigenvectors

that satisfy the governing equation for a low-g sloshing tank.

In general, the solution has the same formal structure as the pendulum

equivalent:

ω2
n = Ω2

n

[
g

R0

+
σ

ρR3
0

]
(3.27)

However, this result highlights the additional surface tension term, which acts as

a stiffening element in low-g conditions. Mechanically, this is what an additional

torsional spring at the pendulumhinge or a linear dashpot would represent. Compared

to the torsional spring in a pendulum setup, linear dashpots allow the design of new

configuration in Mode 2 that aims to represent the behavior more accurately for

AOCS purposes. Therefore a different mechanical equivalent has been modeled to be

included in the dynamics of the spacecraft and represent not only the right sloshing

modes but also other parameters like inertia and mass distribution.

Some parameters need to be discussed regardless the model chosen. In

particular,

• Oscillating mass: Analytical results for cylindrical tanks show that sloshing

mass decreases as Bo decreases, with approximately 10% lower mass at Bo = 10

compared to Bo = ∞ [1, 7]. The same trend of sloshing mass can be considered

for the case of rectangular tanks, because the underlying analytics refers to the

same evolution. In this way, a coherent input data is ensured for the model.

Moreover, prediction with similar analytical base are available for spheroidal

tanks and the result can be sufficiently representative for spheroidals as well.

Figures 3.5.2 and 3.5.3 illustrate the sloshing mass evolution as a function of fill

ratio and Bond number.

From the evolution shown, it can be seen that even though at Bo = 10 the value

of sloshing mass decreases slightly from values of high sloshing, the evolution

is smooth and continuous to values in the uncertain range of 1-10 Bo and and
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Figure 3.5.2: Evolution of sloshing mass to total mass ratio with Bo and fill ratio as
varying parameters

Figure 3.5.3: Evolution of sloshing mass to total mass ratio with Bo and fill ratio as
varying parameters

below, in the region of capillarity dominance. This is important and valuable for

a switching condition that makes more than one mode being dynamically solved

at the time.

• Low-g slosh modes: Oscillation frequencies decrease significantly compared

to high-g sloshing. From experimental and

simulation results, it appears that the frequency has markedly different values

for spheroids and cylindrical/rectangular shapes. Spheroidal tanks tend to have

slightly higher frequencies for equivalent fill ratios than cylindrical or rectangular

tanks. In the capillarity-dominated model, only the first mode is considered

due to limited experimental data. As general pattern ωn decrease as fill ratio

decreases. Although the dependence on the Bond number is embedded in the

computation of ω as surface tension substitutes the dominance of the restoring
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force in gravity. As can be deduced from Equation 3.22, a larger tank has a lower

frequency, and for higher surface tension, the frequency will increase.

• Damping: sources of data for damping in low-g conditions cover only partially

the different geometries, fill ratio, and Bond number. Some experiments

conducted on cylindrical tanks show that for low Bo, damping ζ scales with the

inverse of Reynolds number, Re, and to the fluid viscosity ν[7]:

ζ = 4.47

…
ν

ω1R2
0

(3.28)

This observation provides useful insight, although it is not yet proven to be

generalizable to all tank shapes. Nevertheless, it serves as a valuable reference for

comparing magnitudes and trends. To characterize Mode 2 damping, data from

experiments on various tank geometries have been analyzed and fitted against

observations from different low-gravity setups. Additional trends for damping

can also be inferred from settling timemeasurements and force response curves.

In general, damping tends to increase under low-gravity conditions, partly due

to larger wetted areas and enhanced viscous effects. However, these factors

alone do not fully explain the observed increase. Despite the higher damping

values, the system remains underdamped, with oscillations decaying gradually

over time.

Here after are presented the numerical findings from literature results combination.

The first low-g slosh mode is presented for spherical and oblate tanks as function of

both fill ratio fillr and Bond number Bo. The range that is relevant to observe for this

model is 1-10Bo andBo < 1. It is in general more common to find data for the former.

However, for a first version of the model, the values found are good representations

of the physical behavior, shaping satisfying results for the shapes considered in the

model. Particularly, ω1 is presented for cylindrical, spherical and oblate shapes, and

for rectangular tanks the accuracy is good using a cylindrical equivalent sized model.

Slosh mass for the spherical tanks is shaped on experimental trends and can be used

for spheroids as well, since experiments conducted on oblate spheroids agree well with

the spherical tanks findings. The cylindrical and rectangular cases are based on the

assumption that the trend of sloshmass as function of fill ratio is the same but scaled in

high-g and low-g, with themagnitude decreasing with Bond number. This assumption

is verified in some experimental results, noticing the slosh mass at Bo = 10 is 10%
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lower that at high Bo. [7][8]This linear trend is taken for low-g modeling, to shape

a slowly decreasing function which maintains the same shape as in high-g. Damping

for cylinders is represented by two functions for the range respectively of Bo > 5 and

Bo < 1, noticing the logarithmic trend for damping as function of a decreasing Bond

number, the two functions are interpolated to have continuity also in the mid-range.

[7] Damping for sphere and spheroids is derived from experimental results and shaped

as function of fill ratio.

Low-g slosh mode ω1:

• Cylindrical: 0.2001e−1.9fr + 1.484e0.01255fr ω1 = 1.61[ σ
ρR

(1 + 0.798Bo)]0.5 and when

h<3R ω1 = 1.61[ σ
ρR

(1 + 0.798Bo)]0.5 · (tanh(1.841h/R))

• Spherical:a0(Bo) + a1(Bo) · fr + a2(Bo)f
2
r where

a0 = −0.0053x2 + 0.0678x+ 0.1148

a1 = 8.7 · 10−4x2 + 0.0175x+ 0.0607

a2 = −0.0164x2 + 0.2309x+ 0.3050

• Oblate:a0(Bo) + a1(Bo) · fr + a2(Bo)f
2
r where

a0 = 0.0065x2 − 0.119x+ 0.2009

a1 = −0.0156x2 + 0.2093x+ 0.3546

a2 = −0.0069x2 + 0.1331x− 0.1306

Low-g sloshing massm1:

• Cylindrical: D
4.4H

tanh
(
3.68H
D

)(
0.9 + 0.1Bo−10

90

)
and when implemented, the scaling

factor can be clipped in [0.5, 1].

• Spherical:0.0781 + 0.0025fr + 0.1434Bo− 0.0008fr · Bo− 0.0059Bo2

• Oblate: 0.0781 + 0.0025fr + 0.1434Bo− 0.0008fr · Bo− 0.0059Bo2

Low-g damping ratio ζ:
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• Cylindrical*:

0<Bo<1:ζ01 = 4.47

…
ν

ω1R2

1<Bo<5:(1 + w) · ζ0−1 + wζ5

Bo>5:ζ5 = 0.097
(
1 +

8.20

Bo0.6
)… ν

ω1R2

where w =
(log10(Bo)− log10(B))

(log10(5)− log10(1))
=
log10(Bo)

0.6990

• Spherical:a2 · f 2
r + a1 · fr + a0 where

a2 = −0.077(log10Bo) + 0.977

a1 = 0.0556(log10Bo)− 0.1353

a0 = −0.0312(log10Bo) + 0.0717

• Oblate:a2 · f 2
r + a1 · fr + a0 where

a2 = −0.077(log10Bo) + 0.977

a1 = 0.0556(log10Bo)− 0.1353

a0 = −0.0312(log10Bo) + 0.0717

* The trend ofBo is fitted as piece-wise function to comply with literature results.

3.5.2 Shape and Geometrical Configuration

A key characteristic of the capillarity-dominated regime is the shape that the fluid

adopts. In this regime, the force that normally keeps the fluid surface horizontal

becomes negligible, allowing capillary effects to dominate. As a result, the liquid tends

to cling to the walls and rise along the tank borders relative to the central region.

The configuration of the fluid surface is governed by thermodynamic principles and

energy minimization. While a detailed derivation is available in several sources [8], an

intuitive explanation is presented here to illustrate how the fluid surface evolves.

Consider a cylindrical section connected at its diameter to a cone on each side. If the

two conical borders are pulled apart, work is applied to the section. The work, ∆W ,

is equal to the surface tension multiplied by the change in wetted area after the fluid
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configuration is perturbed. When the contact angle θc is constant, the wetted area can

be expressed as:

Acapillarity = Ainterface − cos θcAwet (3.29)

Considering the energy balance on the system, assumed isothermal:

∆U = ∆Q+∆W (3.30)

where U is the internal energy and ∆Q is the heat transfer. For an isothermal and

reversible process, we also have:

∆Q = T∆S (3.31)

where S is the entropy and T is absolute temperature. If the tank reaches the

equilibriumconfiguration only due to external conditions, e.g. microgravity, nowork is

performed. Therefore the expression in Equation3.5.2 becomes ∆U = ∆Q Regarding

the contribution of entropy change, for the second law of thermodynamics it holds

∆Q ≤ T∆S which, combined with the previous expressions, yields:

T∆S = ∆U − σ∆Acapillarity ⇒ 0 ≥ −σ∆Acapillarity (3.32)

and because σ can only have positive values, it follows that ∆Acapillarity ≤ 0. This

shows that when capillarity dominates, the fluid adopts a configuration thatminimizes

the capillary area, i.e., the interface surface. For a given liquid volume and θc = 0,

a hemispherical configuration achieves the lowest capillary area compared to a flat

surface.

In a hemispherical configuration, the interface radius of curvature matches half the

tank width or radius. The fluid height at the lowest point is approximately one-third

lower than the level of a flat interface. Basic geometric considerations, such as the

center of mass of triangles, explain this height distribution for an incompressible

fluid. While the hemispherical interface has a slightly larger surface area than the

flat alternative, the increase in wetted area dominates, resulting in a more negative

∆Acapillarity according to Equation 3.29.

This new configuration does not directly alter the oscillatory behavior of the fluid,

but for mid-filled tanks it significantly changes the mass distribution. It is therefore

important to track the resulting changes in inertia in the AOCS database. Typically,
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experiments and simulations focus only on impact forces on tank walls and do not

account for the geometric variation of the interface. However, scientific studies of fluid

behavior in microgravity provide photographic and analytical data that can inform

the mechanical equivalent model, particularly for Mode 2 in capillarity-dominated

conditions.

The same principle applies to free-floating drops and Mode 3. Fluid drops tend to

merge to reduce their interface area, ultimately forming a single sphere. For any

contact angle θc, a free-floating drop has a larger capillary area than one attached to the

tank walls. Therefore, the stable configuration of a drop corresponds to attachment to

the walls, consistent with the geometries seen in Modes 1 and 2.

3.5.3 Mode 2 Physical Model Description

Information required to develop a physical model that represents all relevant features

and data for analysis within an AOCS simulator is generally not easy to obtain. Most

experiments and simulations have different objectives, so data are often fragmented.

However, by collecting results from multiple sources and cross-checking them, some

trends have been identified and used to construct a new, representative model.

This mechanical equivalent is intended to capture the most significant aspects of fluid

motion in capillarity-dominated tanks. These include the oscillation frequency, the

forces generated by fluid movement, and the mass distribution, which determines the

system’s inertia. The reference model is illustrated in Figure 3.5.4.

The sloshing mass is divided into three main blocks: the largest portion is assigned to

the central mass, m3, while two equal lateral masses, m1 and m2, complete the total

sloshing mass.

The central mass rests on a raised platform to match the total center of gravity of the

fluid not involved in surface curvature. The platform canmove vertically, compressing

a spring k3z , mimicking the extension of themeniscus under longitudinal accelerations

or rotations. The centralmass can alsomove horizontally along a skid, constraining the

positions ofm1 andm2, which are linked tom3 via a rigid rod. The lateral masses have

fixed horizontal positions, while their vertical motion is guided along slides following

the tank walls.

This design replicates the rise of fluid along the tank walls, producing a hemispherical
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Figure 3.5.4: Mode 2 physical model
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surface in cylindrical and rectangular tanks, or a hemi-elliptic surface in spheroidal

tanks. For half-full or less-full tanks, the portion of fluid rising due to capillarity can

be significant, sometimes exceeding 40% of the remaining volume.

These hemispheres or hemi-ellipses can be approximated in cross-section as triangles

relative to the horizontal height of the lowest point of the interface. Following the

geometric center of these triangles, the positions of m1 and m2 are determined both

horizontally—at one-third of the triangle base from the wall—and vertically, at one-

third above the peak of curvature. The centralmass,m3, is placedmidway to the lowest

point of the curvature to represent the remaining distribution.

The central mass has two degrees of freedom and interacts with the lateral springs

k3 and a linear dashpot as a damping element. These parameters drive the

oscillatory motion of the central mass while the lateral masses compensate for volume

conservation, maintaining the meniscus shape. Under a perturbation, for example, if

the fluid is pushed toward one side, the fluid in low-gravity conditions will slowly cling

to that wall, while the opposite side follows the motion more gradually, decreasing in

height but preserving the curved interface pattern. Experimental observations, such

as those shown in Figure 3.5.5, can aid in visualizing this behavior.
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Figure 3.5.5: Experimental observation in low gravity. The surface maintains a curved
interface on both walls edges even when the horizontal position of the center of mass
is moved

Values for the spring constants and damping coefficients are derived from simulations,

considering oscillation frequency, decay time, and damping ratio.

The relative quantity of fluid contributing to lateral distribution depends on the fill

ratio, so model parameters are updated accordingly. In tanks with variable cross-

section, such as oblate shapes, the surface dimensions change with fill ratio, requiring

updates to both the horizontal and vertical equilibrium positions of the masses.

At high fill ratios, the gas bubble above the fluid is well represented by the curvature

of the interface and the remaining tank volume, particularly in curved tanks. The

fluid’s position in the tank is determined by the most recent acceleration or pseudo-

acceleration experienced. For an impulsive step down to microgravity, the fluid

initially responds as if accelerated in the opposite direction. The system then

reconfigures in Mode 2 according to the effective acceleration, with the final position

from Mode 1 used as the initial condition. In realistic scenarios, the tank is rarely at

rest before entering microgravity, so this initial configuration is typically known.

For simulations starting directly in microgravity, the model can begin in a

chosen configuration relative to the body frame. If in-tank sensor data are

available, these measurements can be incorporated as initial conditions for the fluid

configuration.

3.6 Drop Mode

The third configuration considered in this work is the drop mode. In this mode, part

of the fluid under certain perturbations detaches from the main mass and, through

coalescence of smaller drops, forms a single drop or blob. This behavior occurs when

surface tension acts on the fluid and competes with other forces. As discussed in
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the surface energy considerations, the configuration of a floating drop is inherently

unstable. It represents a transient fluid distribution thatwill eventually rejoin themain

fluid mass or move toward the tank walls if no other fluid is present.

Understanding this dynamics is useful for analyzing transient moments between

maneuvers or during transitions in mission phases. In such situations, relying

only on stable configurations may fail to capture the complexity of the actual fluid

behavior.

Drop mode is typically activated during transitions between accelerated (high-g)

conditions and capillarity-dominated (low-g) conditions, and vice versa. It is also

relevant at low fill ratios: when the fluid is in Mode 2 and experiences an impulsive

acceleration insufficient to trigger a complete transition to Mode 1, experiments show

that the fluid can fully detach from the wall andmove as a drop until it reaches the wall

again.

Early studies by Rayleigh demonstrated that oscillations of a drop under perturbation

distort its surface from equilibrium. The restoring forces in this case arise solely from

surface tension. When viscosity is included, small oscillations experience damping,

but because the drop does not impact the wall, effective damping is much lower than

in capillarity-dominated or high-g sloshing.

For a drop that does not come intooes not come into cont, thect with the tank, the

rotation of the tank does not directly influence its motion; therefore, the drop does

not store angular momentum that could affect the spacecraft. The drop itself may

rotate, but this rotational motion has minimal relevance to the overall analysis and

is not considered. Instead, it is sufficient to model the translational movement of

the drop, which is sustained by springs representing the dynamical properties of this

configuration.

More in detail, The oscillatory behavior of drops has been studied for centuries, starting

with Rayleigh and more recently using optical observations of various liquids. The

eigen-frequency of a non-viscous, force-free drop, which assumes a spherical shape in

equilibrium, is given by:

ω2
l = l(l − 1)(l + 2)

4π

2

σ

M
(3.33)

Here, ωl is the eigen-frequency, σ is the surface tension, M is the drop mass, and l is

an integer representing the mode of oscillation. The lowest frequency, known as the
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Rayleigh frequency, corresponds to l = 2:

ω2 = 8
4π

3

σ

M
(3.34)

This expression can also be represented in terms of density and radius, as the

equilibrium configuration inherently links these parameters. In practical terms, it is

often convenient to consider the percentage of the total fluid mass assigned to drop

mode and derive the corresponding volume. However, experimental data on drop

mass are scarce and vary with fill ratio. Despite these uncertainties, the drop-mode

setup remains valuable in the overall model and is easily tunable.

More recent studies [11] have incorporated the viscous contribution to the theory,

defining a damping constant as:

Γ =
20π

3

R

M
ν (3.35)

where ν is the kinematic viscosity. This damping is small relatively to the oscillation

frequency, which can therefore be considered effectively unchanged. These results are

valid for free-force environments such asmicrogravity and are assumed to apply during

transitional conditions, effectively slowing down the drop motion without altering its

primary oscillatory behavior.

3.6.1 Mode 3 Physical Model Description

The portion of fluid that detaches from the main mass due to residual velocity, inertia,

or interface deformation depends on the tank’s condition. The predominant parameter

affecting the amount of mass in the drop is the fill ratio. Consequently, the size of the

drop increases as the fluid height decreases. Experimental observations indicate that

for fill ratios below approximately 0.20 and very low Bond numbers, stable equilibrium

configurations can consist of entirely free-floating blobs or drops partially attached to

the walls [NASA_Cold-sat][21]

In general, for fill ratios around 0.1− 0.15 or lower, during transitions or disturbances

in microgravity, nearly 90–100% of the fluid can be considered to collect into a single

drop. This behavior contrasts sharply with high fill ratio conditions, where any formed

drops are small and quickly merge back into the main fluid mass, becoming almost

negligible. An empirical formula for assigningmass to the drop, based on experimental
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observations, is:
mdrop

mtot

= 0.7(1− C)1/2 (3.36)

The remaining fluid mass is treated as a solid ”brick” centered at the remaining liquid

center of mass, which does not participate in the drop dynamics.

The drop is modeled as a spherical mass. Its relative volume and surface area are

computed using standard geometric relationships. The casewhere the sphere diameter

exceeds the tank dimensions is generally ignored, as high fill ratios produce small

drops constrained within a small volume, while at mid and low fill levels the drop

remains free to move. Nevertheless, for numerical stability and physical consistency,

it is recommended to impose a maximum drop radius based on the fill ratio and tank

geometry. If computations yield a radius exceeding this limit, the maximum allowable

radius is enforced.

The drop is modeled as a rigid sphere floating freely within the tank. Physically,

the drop is deformable, maintaining constant volume. Surface tension acts like an

elastic membrane, resisting surface area increases. When the drop is perturbed,

its deformation stretches the sphere, which then responds by restoring its shape.

This behavior is modeled using springs that push and pull the sphere back toward

equilibrium, as illustrated in Figure 3.6.1.

The drop is modelled as a rigid sphere floating in the middle of the tank, with no

forces applied to it and so in equilibrium. The drop it self wound not be a rigid

body, but a deformable mebrane that keeps a constant volume. The deformation,

coming from surface tension, can be considered having elastic properties. This is

because surface tension acts agaist any surface increasing action. In practice this

results in a higher inertia while part of the mass is brought to follow the direction of

the perturbation. Since the volume needs to stay constant, the deformation stretches

the sphere, which it self responds to the impulse pulling back in shape the fluid. This

mechanism is modelled with springs that pull and push back the solid sphere as shown

in Figure3.6.1.

The potential energy of the drop is proportional to its surface area:

V = σ · A (3.37)

where σ is the surface tension. The condition ofminimumpotential corresponds to the
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Figure 3.6.1: Mode 3 physical model
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condition of minimum area - the sphere. This means that for small deformations

Vsurface = σ · (A0 + δ) ≈ σA0 +
1

2
A0 +

1

2
keff (deformation

2) (3.38)

The reaction of the fluid to the new shape can be represented with an equivalent

spring constant distributed along the surface, multiplied by the deformation from

the spherical surface. While an ideal model would use an infinite number of springs

radially distributed, a simplified approach divides the equivalent spring constant keff

n = 4–6 springs- for either a planar or three-dimensional representation. This allows

the solid sphere to distribute the response to the deformation on different directions

within the axis of the coordinate system.

The spring constants are derived from the oscillation frequency due to surface tension

(3.6) and the relation k = ω2m: k = ω2m:

ki =
32πσ

3 · n
, i = 1, . . . , n (3.39)

where, in general the value of n can be increased with no limits if the dynamics of the

system is updated. The springs are attached to the tankwalls, bottom and top. Firstly it

has been considered to make the spring statically attached to the mid-point of the tank

wall, bottom or top, to restore from all directions the drop at the center. However, also

an alternative approach has been presented since the former could not result physically
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accurate. Particularly, there is lack of clear evidence that the deformation of the sphere

is opposed by the fluid also for displacement ofmass from the initial point and not only

for the shape. Therefore, the elastic potential has been kept only to restore the sphere

shape but not to push back to the center the sphere. This is translated in physical

properties having all springs on skids. In this way springs would follow the movement

of the sphere and then restore it on each axis. The restoring force in this way acts in the

direction of the deformation only, slowing down the motion as expected.With sliding

springs there is no representation of the perpendicular contraction as response to the

stretching in one direction for the conservation of volume. This aspect is assumed not

to be influencing the center of mass position considerably. The ease of computation is

of higher advantage, bringing the sphere to be slightly deformable.

3.6.2 Transition Implementation

The drop mode represents an inherently unstable fluid configuration. Whenmodeling

this behavior within a switching-mode system, the transition from drop to the main

fluid mass can be handled in different ways. One approach is to track the drop’s

position: as it approaches the tank walls or the remaining fluid interface, its velocity

can be set to zero and its mass reassigned to the main body of fluid. While this method

reflects the underlying physics, it introduces sudden changes in inertia and mass,

which can complicate the numerical implementation.

An alternative and smoother approach is to model the transition as a gradual change

in mass over time. In this case, the drop’s mass decreases continuously according to

a transition time that depends on the fill ratio. This method avoids abrupt changes in

dynamics and better captures the physical process of the drop merging back into the

main fluid. Mathematically, the evolution of the drop mass can be expressed as:

mdrop(t) =

(
1− t

ttransition

)
mdrop,i (3.40)

This representation ensures that both the motion and the mass of the drop evolve

smoothly, preserving numerical stability and maintaining a realistic depiction of the

fluid’s behavior during the transition.

The transition time can be computed based on some experimental results from [8] and
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others as

ts = K · D
3ρ

σ

where K can vary in the range of 0.15-0.16 based on different tank shapes, K=0.15

is implemented in the model. For when the velocity of the drop is particularly

low, a upper-bound to the duration of the transition could be included. This could

be evaluated via CFD results, analysing the overall maximum duration of unstable

configurations under low perturbations. Alternatively, to deal with the merging of

the drop mass to stable configuration mass, the additional geometric constraint,

represented with a smoothed function, can be included in parallel to the time

constraint.
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Modes Dynamics and
Implementation

To track the evolution of the propellant response inside the tank, it is computationally

efficient to define the governing equations of motion and solve them numerically. This

approach avoids the need for sensors or cameras inside the tank, although fine-tuning

could still benefit from such measurements.

The equations of motion describe how the fluid responds to specific inputs, such

as perturbations acting on the tank, gravitational effects at different altitudes, or

maneuvering forces from the spacecraft. Since external conditions vary throughout the

mission phases, the model representing the fluid’s behavior must adapt accordingly.

Each of the designed modes is described by its own set of equations of motion, still

they all present the same output to ensure the functioning of the following subsystems

regardless of the mode that the fluid is in.

Indeed, the Simulink implementation of this model is intended as a component within

a larger AOCS simulation environment. In this setup, the sloshing model for a

given tank receives inputs from other spacecraft components and simulationmodules,

including control hardware outputs (forces and angularmomentum) aswell as external

perturbations acting on the spacecraft.

It is also important to note that propellant sloshing is often not the only oscillatory

phenomenon coupled to the spacecraft’s main structure. Spacecraft may also include

features such as double tanks, deployable booms, or large flexible solar arrays. These

appendages influence the spacecraft’s motion and are themselves affected by it. The
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resulting dynamics are coupled between the spacecraft’s rotational and translational

degrees of freedom and those of the sloshing model (or, similarly, the equivalent

models for flexible appendages).

This chapter derives and presents the equations of motion for all three modes of

the sloshing model. Firstly considering the two-dimensional case for the ease of

the analysis, and then extending to the three-dimensional case - also required for

integration into the AOCS simulation. The analysis focuses on representing the tank as

an accelerating and rotating frame of known motion, with the fluid’s force and torque

as outputs and the tank’s acceleration and rotation as inputs. Following this structure,

the fluidmotion is influenced by themotion of the tank but no feedback coupling on the

spacecraft dynamics is presented. This framework is considered at least initially due

to the alignment with many experimental setups, where tanks are mounted on shakers

or gimballed tables with controlled dynamics, and the measurable output is the force

on the tank walls.

Finally, the chapter includes the derivation of supporting parameters from available

data or known tank characteristics, ensuring that the model can be applied to a variety

of spacecraft configurations.

4.1 Equations Mode 1

For sloshing in high-g conditions, the representative model for fluid motion is the

pendulum. When subjected to high-magnitude acceleration, the fluid tends to

oscillate in the direction of the perturbation with considerably high amplitude. The

frequency of oscillation is related to the gravity level and the length of the modeled

pendulum, as discussed inChapter 3. In the literature, the coupling betweenpendulum

motion and spacecraft pitching, as well as the effects of distributed acceleration along

different axes, is often neglected. Most common experiments consider high-magnitude

acceleration along the z-axis—the longitudinal direction of the tank—with values in the

range of 1−10, g0. In these cases, the equilibrium position of the pendulum aligns with

the longitudinal axis of the tank. However, in typical launch or thrusting conditions,

the resulting acceleration may not align with any of the body axes, instead forming an

angular offset ψ0 from the vertical.

In the following derivations, based on Landau’s theory for a non-inertial frame,
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Figure 4.1.1: Mode 1 physical model
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the pendulum is always aligned with the effective acceleration, which includes both

thruster and gravitational contributions. Consequently, the bottom of the tank—

perpendicular to the equilibrium direction of the pendulum—varies depending on the

relativemagnitude of the accelerations along the different axes. This holds for any tank

shape that is not spherical.

Considering a new equilibrium offset for each possible combination of acceleration

components implies that an infinite number of tank orientationswould theoretically be

needed. Since only part of the fluid is assigned to the pendulum mass, it is important

to account for the pendulum rod’s equilibrium direction. The remaining fluid mass

settles at the bottom of the tank, forming a surface interface perpendicular to the

equilibrium direction. Thus, for different orientations, both the bottom configuration

and the static fluid shape change, leading to variations in relative mass inertia and

center of mass.

Although this aspect is important formodeling, no live function has been implemented

to compute the tank shape in high-g conditions based on the experienced accelerations.

Practically, two setups can be considered based on the offset angle θ0. For θ0 ≤ 45◦, it

is reasonable to assume the tank retains its vertical geometry. For θ0 > 45◦, the tank
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geometry can be considered rotated along the perpendicular axis. For instance, an

oblate tankmay behave as prolate under certain accelerations, while a rectangular tank

effectively rotates, flipping its side dimensions. Cylindrical tanks aremore complex but

can be approximated as rectangular for initial analyses.

The equations of motion are first derived in a 2D projection, considering only the xz

plane. Ignoring the feedback interaction with the spacecraft’s degrees of freedom,

the only free coordinates describe the motion of the included pendulums. When

only the first sloshing mode is considered, the dynamics are captured by a single

equation, corresponding to the angle of inclination ψ of the pendulum rod relative to

the equilibrium position (ψ0).

The reference frame is centered at the geometric center of the tank, with axes aligned

to the tank’s body frame.

Considering the Lagrangian for the pendulum, which bob mass is considered

inertialess, it results

L =
1

2
mv2 +mv · Ω× r +

1

2
m(Ω× r)2 −ma · r − U (4.1)

where the vectorial terms are expanded for this configuration as:

• position vector r = [−Lsinψ 0 h1− Lcosψ];

• velocity vector v = ψ̇[−Lcosψ 0 Lsinψ];

• frame acceleration a = [ax 0 az];

• frame angular velocity Ω = [0 ωy 0];

while the products v · Ω× r and (Ω× r)2 result in

(Ω⃗× r⃗)2 = [rzωy 0 − rxωy]

= [(h1− Lcosψ)2ω2
y 0 L2cos2ψ]

(4.2)

and

v⃗ ·
(
Ω⃗× r⃗

)
=

[
vxrzωy 0 −vzrxωy

]
= − (h1 − L cosψ)ωyL cosψ ψ̇ − L2 sin2 ψ ωy ψ̇

(4.3)
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Assembling the terms in a scalar way, the resulting Lagrangian is

L =
1

2
mψ̇2(L2cos2ψ + L2sin2ψ) +m(−(h1 − Lcosψ)ωyLcosψψ̇) +mL2sin2ψψ̇

+
1

2
m((h1 − Lcosψ)2ω2

y + L2sin2ψω2
y) +maxLsinψ +maz(−h1 + Lsinψ)− U

(4.4)

To derive the EOM forψ, L need to be derive by the derivative of the generalised

coordinate as
d

dt

(
∂L
∂ψ̇

)
− ∂L
∂ψ

= Qψ (4.5)

∂L
∂ψ̇

= mψ̇L2 −mh1Lcosψωy +mL2ωy (4.6)

d

dt

(
∂L
∂ψ̇

)
= mψ̈L2 +mh1L sinψωyψ̇ −mh1L cosψω̇y +mL2ω̇y (4.7)

∂L
∂ψ

= mh1ωyL sinψψ̇ +mLh1 sinψω2
y −maxL cosψ +mazL sinψ − ∂U

∂ψ
(4.8)

The resulting equation ofmotion describing the evolution of the pedulumbob position,

in a tank subjected to acceleration and pitch is

mL2ψ̈ −mh1ω̇yL cosψ + ω̇ymL
2 −mh1 sinψω2

y −maxLcosψ

+mazL sinψ +m(gxL cosψ + gzL sinψ) = Qψ

(4.9)

Where as potential expression has been added the gravitational influence with its

components on the xz plane. When the spacecraft is not aligned with the direction

of the gravitational field, it is not possible to consider gravity only acting on its

longitudinal axis, but instead it needs to get decomposed on projections on the body

frame axis. Given a model in the inertial frame representing the gravity gradient, with

the known rotation matrix RBI from inertial to body frame, it is possible to input the

right components.

As generalised forces applied on the system, some disturbances can be added, also

expressed in body frame coordinates. Here the termQψ can include also the expression

for dissipation, which cannot be added in the classic Lagrangian. In particular, from
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the derivations explained in Chapter 3, the damping coefficient is included as

Qpsi = −cψ̇ (4.10)

where c is a coefficient based on the damping ratio ζ and shaped to contribute as

angular dissipative term.

This equation is implemented in the Simulink model under the Mode 1 block. It

describes the position of the pendulummass in the body frame, which is always aligned

with the effective acceleration vector.

In this formulation, the tankmotion is considered known and is not coupled back to the

sloshing motion. When full coupling between the pendulum and the spacecraft/tank

motion is considered, xB and zB also become degrees of freedom, representing the

translations along the body x and z axes, respectively. Additionally, pitching is treated

as a generalized coordinate, denoted by θ.

The setup differs slightly because the tank motion no longer appears as pseudo-forces

acting on the internal motion. The velocity vector must now be expanded to include

all terms that cannot be neglected (see Landau’s derivation for an accelerating frame

in[17]).

Velocity is defined both for the pendulummass and for the staticmass. The staticmass

is referenced to the tank center and added to the static fluid mass, denoted asM . The

inertia IB is also assumed to be referenced to the tank center. For the fluid mass, this

is straightforward, while for the remaining spacecraft mass, the parallel axis theorem

must be applied twice in this setup.

The pendulum velocity is then:

vpend = v⃗B +
dr⃗

dt
+ Ω⃗× r⃗ (4.11)

The resulting Lagrangian for the fully coupled dynamics is computed as

L =
1

2
mψ̇2L2 +mψ̇((−h1 + Lcosψ)ωyLcosψ) +mL2sin2ψωyψ̇

+
1

2
m(h1 − Lcosψ)2ω2

y +
1

2
mL2sin2ψω2

y +mLaxsinψ+

−mazh1 +mazLcosψ − Upend +
1

2
M(ẋB

2 + ˙zB
2) +

1

2
θ̇2IB − UB

(4.12)

61



CHAPTER 4. MODES DYNAMICS AND IMPLEMENTATION

With some derivation in the same fashion as the equation derived above, the resulting

dynamics of the coupled motion are the following four:

• pendulum angle ψ:

mψ̈L2 = −mL2θ̈ +mh1θ̈Lcosψ +mh1θ̇
2Lsinψ +mLcosψ(ẍB + żB θ̇)+

−mLsinψ(z̈B − ẋB θ̇)−
∂Upend
∂ψ

− ∂UB
∂ψ

+Qψ

(4.13)

• body traslation on x axis xB:

(M +m)ẍB =− ψ̇2mLsinψ + ψ̈mLcosψ −mθ̈(h1 − Lcosψ)−mψ̇θ̇Lsinψ+

− ∂Upend
∂xB

− ∂UB
∂xB

+QBx

(4.14)

• body traslation on z axis zB:

(m+M)z̈B =ψ̇2mLcosψ − ψ̈mLsinψ − θ̈mLsinψ − ψ̇mθ̇Lcosψ+

− ∂Upend
∂zB

− ∂UB
∂zB

+QzB

(4.15)

• rotation of the body θ:

θ̈(IB +mL2 +mh21 − 2mh1Lcosψ) = ψ̈(mL2 −mh1Lcosψ)− ψ̇2mh1Lsinψ+

− 2ψ̇mh1Lsinψθ̇ −mLcosψ(−ẍB + ˙zBψ̇)+

− ẍBh1m−mLsinψ(ẋBψ̇ + z̈B) +Qθ+

− ∂Upend
∂θ

− ∂UB
∂θ

(4.16)

In these derivation the generalised forces Qi can be inserted as also damping on

different DOF. Although here only the sloshing damping is relevant. Other forces

and torques that can fall under this description are the forces from the thrusters or

the torques from reaction wheels using for maneuvres. In this case the right handling

of these terms is through virtual work and respective generalised force acting on the

correct system component. For a thrust or a torque given in body frame, the virtual
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work is

δW = F⃗ · δrT + τ⃗ δϕ (4.17)

The respective generalised force for a force acting only at the tank center is

Qi = F⃗ · ∂ ⃗rtank
∂qi

(4.18)

and for a force acting at the hinge of the pendulum is

Qi = F⃗ · ∂ ⃗rtank
∂qi

+ F⃗ · ∂ ⃗rpend
∂qi

(4.19)

The same approach applies to generalized torques. In this way, the control action

applied through hardware enters directly into the equations of motion, making

it possible to monitor the evolution of the fluid motion for any control input

received.

When extending the model to three-dimensional motion, it is useful to describe the

possible alternatives. The fluid responds to lateral motion with perturbations confined

to the plane of the applied force. Therefore, a fluid receiving an input along any axis

will tend to oscillate and eventually damp only along that axis. It is physically justified

to consider planar motion when a disturbance is received. Aligning the main thruster

with the fixed reference frame simplifies the analysis; otherwise, a rotation matrix can

be used to align the thrusting or torquing axis with the tank axes. Off-plane fluid

motion, referred to as swirling, is induced by a periodic lateral disturbance with the

same frequency as the slosh natural frequency. For this initial model, this motion

can be neglected. An alternative is to model the fluid as a spherical pendulum, which

is inherently three-dimensional but results in much more complex equations when

coupled with spacecraft motion.

To achieve a computationally lighter and physically intuitive model while retaining

dynamic accuracy, a double-plane assembly is used for three-dimensional fluid

motion. Specifically, the pendulum motion in the xz plane, excited by pitch and

acceleration, is paired with an equivalent model in the yz plane. In this setup, the

degrees of freedom for high-g sloshing, when fully coupled with the spacecraft motion,

are: [xB,yB,zB,θx,θy,ψx ,ψy]. The spinning motion of the longitudinal direction (θz) of

the tank is modelled separately. It becomes relevant for motions typical of the first

phases of a mission,as launch and despun.
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Figure 4.1.2: 3D set up-z coordinate constraint

In this configuration, the same pendulummodel is used on both planes. The pendulum

position in each plane is:

rpendxz =
[
−Lsinψx 0 h1− Lcosψx

]
rpendyz =

[
0 − Lsinψy h1− Lcosψy

]
(4.20)

From these vectors, it is evident that the z component is computed in the same

way in both planes but depends on different angles. The two expressions cannot be

treated independently. Therefore, only the lateral components x and y are used from

each plane in the three-dimensional model.Instead, the vertical component z must be

recomputed as a function of both angles to satisfy the physical constraint of a rigid

pendulum rod.

The z(ψx, ψy) component can be derived from the pendulum length L derived as:

(xpend(ψx))
2 + (ypend(ψy))

2 + (h1− z(ψx, ψy))
2 = L2 (4.21)

and z results from the nonlinear expression

z(ψx, ψy) = h1−
»
L2 − xpend(ψx)2 − ypend(ψy)2 (4.22)

that when the component yp = 0 results z = h1−
»
L2 − x2pend = h1− Lcosψx

To finilise the computation and write the correct Lagrangian the pendulum mass
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velocity drpend

dt
becomes:

rpend =
[
−Lsinψx − Lsinψy h1−

√
L2 + (Lsinψx)2 + (Lsinψy)2

]
(4.23)

vpend =
drpend
dt

=

[
−ψ̇xLcosψx − ψ̇ycosψy (− Lsinψx·(ψ̇xcosψx)√

L2+(Lsinψx)2+(Lsinψy)2
− Lsinψy ·(ψ̇yLcosψy)√

L2+(Lsinψx)2+(Lsinψy)2
)

]
(4.24)

This velocity component of the pendulum mass must be combined with the tank

velocity and the contribution from tank rotation.The Lagrangian of the coupled system

becomes:

L =
1

2
m(v⃗pend + v⃗B + Ω⃗× r⃗pend)

2 +
1

2
Mv⃗2B +

1

2
Ω⃗IBΩ⃗− Vpend − VB (4.25)

This mode represents the oscillation of a fluid under high magnitude accelerations.

This condition is characterised by high amplitude oscillations and, potentially,

important and abrupt changes of direction of aeff . For this reason, the dynamics of

the pendulum cannot be linearised. Models found in literature -mostly linear- do not

provide coverage for cases where the direction of the acceleration vector varies in the

time evaluated, while, for this kind of application, this aspect must be considered.

Moreover, the mass oscillating under external inputs can provide high torque and

forces coupled with the spacecraft, also due to the great displacement. For this reason,

the pendulum model has been kept as abstract parametrization of this movement,

trying to fit it to the complete scenario of external disturbances with no assumption

of small angle approximation validity. The physical constraint of the tank walls plays

a role in the motion of the mass, especially if referred to the pendulum rod length.

However, as already mentioned in the previous chapter, as first approximation, the

influence of tank walls is assumed not relevant. This is especially valid due to the

higher amplitude that characterises lower filling ratio scenarios, to which correspond

also shorter equivalent pendulum rods.

4.2 Equations Mode 2

In low-g conditions, which are reached at different stages depending on tank

dimensions and fill ratio, the fluid is modeled as clinging to the walls of the tank. The
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Figure 4.2.1: Mode 2 physical model, cross section view
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assumption in this model is that the fluid orientation in the tank can be inferred from

previously experienced high-g sloshing. Specifically, the position of the pendulum

mass from the high-g model is passed to the low-g model to define the fluid mass

location. Infact, the position stored of the mass woudl get passed to the model

for capillarity, and there the mass would be based. The available orientations are

horizontal or vertical sides of the tank, with opposite directions. For pendulum angles

within −45◦ < ψ < 45◦|| − 135◦ < ψ < 135◦ the capillarity model is applied along the

longitudinal direction of the tank. Outside this range, the perpendicular geometry is

used, according to the guidelines presented earlier.

This approach requires, for each tank under analysis, the identification of

configuration parameters and the implementation of a memory block and switching

logic to determine which model to use at each transition.

Compared to the pendulummodel, the low-gmodel demands greater attention to tank

geometry and careful handling of different fill ratios, especially for curved tanks.

A planar representation of the capillarity effect on fluid contains three masses,as in

Figure4.2.1. These masses are connected to each other to physically represent the

surface tension of the fluid and its resistance to separation. All these threemasses have
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position and velocity vectors which contribute to the total Lagrangian. However, the

degrees of freedom are only two:x3 and z3. The other masses have dynamics constraint

to m3 motion. From geometric relationships, it is evident that once z01 and z02 are

known the vertical motion of the lateral masses stands to

(z201 + (
D

2
+ x3)

2) = d2 = const (4.26)

or in other terms using one DOF for each lateral mass

zi = dsinθi

x3 =
D

2
− dcosθ2 = dcosθ1

(4.27)

implying θ2 = acos
(−dcosθ1+D

2

d

)
.

In either way the constraint of the rigid rod is maintained, describing the coupled

up-and-down motion of the lateral masses. The nonlinearities derived can become

difficult to handle in the derivation, due to much more complex chained rule terms.

Moreover, the system is not easily tunable for different fill ratios. It is relevant to relax

the rigid rod constraint to include in the model a tunable parameter that represents

the difference in height reached by the fluid in high fill ratio and low fill ratios, where

the fluid clings even more.

For this reason a new parameter α is introduced. It is shaped to create the

mathematical constraint between variables, maintaining x3 and z3 the only degrees

of freedom and it is a linear function of the fill ratio. In particular, it can be expressed

as

α(fillr)− α0(1− fillr) (4.28)

where α0 is derived based on

z1 = z3 +
»
d2 − (x3 +D/2)2

dz1
dx3

∣∣
x3=0

=
x3 +D/2√

d2 − (x3 +D/2)2

∣∣
x3=0

=
D/2√

d2 −D2/4

(4.29)

and d can be expressed as
√
D2/4 + z201, resulting in the defining equation function of
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all known terms, from geometry of the tank and parameters computation as in

α0 =

√
D2/4 + z201
z01

(4.30)

The horizontal component of the position vector of the model in xz plane is instead

based on geometry only. Taking the width of the tank, constant or varying with fill

ratio, at the fluid height before computing the curvature height, the position of the

lateral masses on the x axis is x01 = −1
3
D and x02 = +1

3
D. While the vertical position,

for what derived above, is:

z1 = z01 − α · x3 + z3 + z03

z2 = z02 + α · x3 + z3 + z03
(4.31)

The position vectors become:

• positionm1: r1 = [−D
3

0 z01 − α · x3 + z3 + z03];

• positionm2: r2 = [D
3

0 z02 + α · x3 + z3 + z03];

• positionm3:r3 = [x3 0 z03 + z3];

The respective velocity vectors are:

• velocitym1 :v1 = [0 0 ż3 − αẋ3];

• velocitym2:v2 = [0 0 ż3 + αẋ3];

• velocitym3: v3 = [ẋ3 0ż3];

To derive the equation of motion describing the evolution of the dynamics of the three

masses in low-g, Landau derivation is used as in the section above. Simply, in this

model the formalism is applied to all the three masses and it will present additional

terms of potential energy given by the two springs. This mechanical addition serves

to keep into consideration the oscillating motion of the fluid but also its intrinsically

elastic energy. The Lagrangian for this model, when the tank is considered the
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accelerated frame and no full coupling is considered is:

L =
1

2
m1(v⃗1

2 + (Ω⃗× r⃗1)
2 + 2v⃗1 · Ω⃗× r⃗1) +

1

2
m2(v⃗2

2 + (Ω⃗× r⃗2)
2 + 2v⃗2 · Ω⃗× r⃗2)+

+
1

2
m3(v⃗3

2 + (Ω⃗× r⃗3)
2 + 2v⃗3 · Ω⃗× r⃗3)−m1a⃗ · r⃗1 −m2a⃗ · r⃗2 −m3a⃗ · r⃗3+

− 1

2
k31x

2
3 −

1

2
k32z

2
3 − V1 − V2 − V3

(4.32)

Where the potential contribution on each mass can be added under the relative Vi.

However, for the conditions for which thismodel is assumed relevant, the gravitational

potential can be neglected.

When developing the products of vector, the Lagrangian in scalar components is

L =
1

2
m1(ż

2
3 + α2ẋ23 − 2αẋ3ż3 + ω2

y(z03 + z3 − αx3 + z01)
2 + ω2

yx
2
01 + 2(ż3 − αẋ3)(−x01ωy))+

+
1

2
m2(ż

2
3 + α2ẋ23 + 2αẋ3ż3 + ω2

y(z03 + z3 + αx3 + z02)
2 + ω2

yx
2
02 + 2(ż3 − αẋ3)(−x02ωy))+

+
1

2
m3(ẋ

2
3 + ż23 + ω2

y(z03 + z3)
2 + ω2

yx
2
3 + 2ẋ3ωy(z03 + z3)− 2ż3ωyx3)+

−m1aBxx01 −m1aBz(z03 − αx3 + z01 + z3)−m2aBxx02 −m2aBz(z03 + αx3 + z02 + z3)+

−m3aBxx3 −m3aBz(z3 + z03)−
1

2
k31x

2
3 −

1

2
k32z

2
3

(4.33)

After proceeding in the Lagrangian derivation and applyingm1 = m2 = m, they result

as:

ẍ3(2mα
2 +m3) =− αω̇y(x01 + x02)−m3ω̇y(z03 + z3)−m3ωyż3 −m3aBx+

+m3ω
2
yx3 −m3ż3ωy − k3x3 +mω2

yα(2z03 + 2z3 + z01 + z02)
(4.34)

z̈3(2m+m3) = mω̇y(x01 + x02) +m3ω̇yz3 +m3ωyż3 − aBz(2m+m3)+

+m3ω
2
y(z03 + z3) +m3ẋ3ωy − k32z3 +mω2

y(2z03 + 2z3 + z01 + z02)
(4.35)

When working in three dimensional environments the model gets slighlty more

complex in its set up. The shape of the equations remains the same but with few

added terms that make it a bit lenghty but with easy derivations. The 3D design can be

observed in Figures

The masses are now five, since the central mass which mimics the water under the
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Figure 4.2.2: Mode 2 3D model

Figure 4.2.3: Mode 2 top view, rods here are omitted for clarity

m

meniscus is still represented as m3. The raise of the fluid is now represented on all

body axes as approximation of the continuity of the fluid on the walls. The position

vectors are now:

• r⃗1 = [x01 y3 z03 + z01 + z3 − αx3]

• r⃗2 = [x02 y3 z03 + z02 + z3 + αx3]

• r⃗3 = [x3 y3 z3 + z03]

• r⃗4 = [x3 y04 z03 + z3 + z04 − βy3]

• r⃗5 = [x3 y05 z03 + z3 + z05 + βy3]
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Where the new parameter β is defined exactly like α but can present another value for

β0 due to different geometry of the cross section of the tank in the yz plane. The intrinsic

velocity vector of the masses inside of the tank, without considering the contribution

of the frame motion are:

• v⃗1 = [0 ẏ3 ż3 − αẋ3]

• v⃗2 = [0 ẏ3 ż3 + αẋ3]

• v⃗3 = [ẋ3 ẏ3 ż3]

• v⃗4 = [x⃗3 0 ż3 − βẏ3]

• v⃗5 = [x⃗3 0 ż3 + βẏ3]

The 3D Lagrangian fully coupled is:

L = Σn=5
i=1

1

2
mi(v⃗i+ v⃗B+Ω⃗× r⃗i)

2+
1

2
Mv⃗B

2+
1

2
Ω⃗T IBΩ⃗− (

1

2
k3x

2
3+

1

2
k3y

2
3

1

2
k32z

2
3)−Ui−UB

(4.36)

The possibility to slide horizontally of the lateral masses is allowed due to the small

amplitude oscillations in low gravity conditions. Indeed this assumption holds for the

same conditions the capillarity mode in employed. For rectangular shapes this has

no assumptions needed, for vertical cylinders and oblate shaped this assumes that the

horizontal movement of the lateral masses follows a straight trajectory for the small

displacements.

4.3 Equations Mode 3

The bubble configuration models part of the unstable configurations that a fluid,or a

portion of it, can assume during transitions or under extremely low-g conditions when

subjected to small perturbations. The setup is conceptually simple and is illustrated in

Figure4.3.1.

Resting on springs, the fluid blob is held approximately at the center of the tank,

free to move under small perturbations. Its dynamics are dominated by surface

tension effects, which govern oscillations. The spring constants and the resulting

mass dynamics are therefore determined entirely by the capillarity of the fluid

interface.
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Figure 4.3.1: Mode 3 physical model, planar
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Tracking the dynamics of this mass is important for simulation purposes, both to

monitor the motion of a coherent portion of the fluid and to estimate behavior during

transition times. The duration in which the drop mode is active corresponds to the

transition time defined in Chapter 3

Considering motion in the xz-plane, the position and velocity vectors of the drop

are

• rdrop = [x 0 z];

• vdrop = [ẋ 0 ż];

These vectors correctly represent the free movement of the drop inside the tank.

The contribution of surface tension is represented via springs connecting the drop to

the tank walls (center, bottom, and top). The deformation of each spring is computed

using the Pythagorean theorem, as the spring stretches or compresses when the drop

moves from the equilibrium center.

The elastic potential energy of a spring is proportional to the square of its deformation.

For a perturbed configuration, where the mass is displaced from the tank center, the

spring lengths can be computed as:

• ∆l1 =
√
(L01 − z)2 + x2 − L01;

• ∆l2 =
√
(L02 − x)2 + z2 − L02;

• ∆l3 =
√
(L01 + z)2 + x2 − L01;

• ∆l4 =
√
(L02 + x)2 + z2 − L02
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When these expressions are considered in the full Lagrangian for the derivation of the

EOM of the drop the expression results:

L =
1

2
m(ẋ2 + ż2 + ω2z2 + ω2

yx
2 + 2ωyzẋ− 2ωyżx)−maBxx−maBzz+

− 1

2
k
(
(
»

(L01 − z)2 + x2 − L01)
2 + (
»

(L02 − x)2 + z2 − L02)
2+

+ (
»

(L01 + z)2 + x2 − L01)
2 + (
»

(L02 + x)2 + z2 − L02)
2
) (4.37)

The derivation above describes the dynamics as stable in the ceter with forces pulling

from different direction and anchor-points. The EOM for this model are:

mẍ = −mωyż −mzω̇y +mxω2
y +mωyż −maBx − 4kx+

kxL01√
(L01 − z)2 + x2

+

− kL02(L02 − x)√
(L02 − x)2 + z2

+
kL01x√

(L01 + z)2 + x2
+

kL02(L02 + x)√
(L02 + x)2 + z2

+Qx

(4.38)

mz̈ = mωyẋ+mω̇yx+mω2
yz +mωyẋ−maBz − 4kz − kL01(L01 − z)√

(L01 − z)2 + x2

+
kL02z√

(L02 − x)2 + z2
+

kL01(L01 + z)√
(L01 + z)2 + x2

+
kL02z√

(L02 + x)2 + z2
+Qz

(4.39)

However, the assumption of fixed spring can be relaxed as explained in the previous

chapter, with themodel still remaining a suitable representation of the physical model.

In fact, both model have been derived, so that with the verification of the results

can highlight the eventual differences - however, there are believed to be minimal.

When the springs are put on skids able to slide on the walls and be deformed only

longitudinally, the equation simplify considerably. This is valuable especially for the

fully coupled three dimensional case but it can be seen already in the 2D derivation

presented here below. When the deformations become simply:∆l1 = ∆l3 = x and

∆l2 = ∆l4 = z, the governing equations become

mẍ = −mω̇yz −mωyż +mω2
yx−mωyż −maBx − 2kx+Qx (4.40)

mz̈ = +mω̇yx+mωyẋ+mω2
yz +mωyẋ−maBx − 2kz +Qz (4.41)

When the three dimensional model is needed the previous equation adapt easily to

form the needed Lagrangian. It is important to notice that, differently from Mode 2,

the mass is not divided differently in the 2D setup than the 3D ones. What changes are
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the number of springs considered that pass from being four to being six, two on each

axis.

Therefore the fully coupled Lagrangian in 3D is:

L =
1

2
mdrop(v⃗drop+ v⃗B+Ω⃗× r⃗)2+1

2
Mv⃗B

2+
1

2
Ω⃗T IBΩ⃗−k(x2+y2+z2)−UB−Udrop (4.42)

UB could contain also gravitational contribution which might be disregarded here as

well. In Udrop some component of surface potential energy can be included. It is

important to acknowledge that part of the surface tension effects are already embedded

in the spring nature which is itself based on the elastic properties of the drop.

4.4 Switching Logic

The switching logic is modified from the blunt switch based on Bond number

thresholds. Instead, in a continuous way, some parameters, the weight functions, are

computed for every fill ratio and input condition which are shaped to compute the

relative dominance of each mode for every condition. The weights for each of the

three mode can vary from 0 to 1. This means that in ’mode dominance’ ranges for

both the stable modes, the relative weight of the representative dominant mode will

be computed as 1 and for the other two modes the weight will be 0. During transition

these weight are more varied. The transition, which is a unstable mode with computed

duration (transition time ttrans) comprehends all the modes at once, until the drop

mode is absorbed in one of the two stable modes with a function of time. A new stable

mode in included: this has a similar shape to the transitory configuration but it does

not have a limited time of actuation. It considered all the threemodes at once and aims

to represent the range between Mode 1 and Mode 2 thresholds, where the dynamics is

not obeying to any specific mode.

4.5 Generalised Use

For the implementation of sloshing in a spacecraft with multiple tanks or other

flexible subsystems, the modeling approach presented in this thesis remains valid.

In particular, the method used to compute the dynamics allows for full coupling

between the spacecraft and the fluid, even though the resulting differential equations
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are nonlinear. Each subsystem i can be described by its own equivalent mass and

other matrices, M (i)(q(i)), C(i)(q(i), q̇(i)), G(i)(q(i)), as well as generalized forces Q(i)(t).

The matrix C can be directly associated to terms as Coriolis force, depending on the

system velocity, while the matrix G contains terms depending on the system position

vector. These can be assembled into a global system:

∑
i

M (i)(q)︸ ︷︷ ︸
global mass matrix

q̈ +
∑
i

C(i)(q, q̇)︸ ︷︷ ︸
global Coriolis/centrifugal type forces

q̇ +
∑
i

G(i)(q)︸ ︷︷ ︸
global conservative forces

=
∑
i

Q(i)(t)︸ ︷︷ ︸
global generalized forces

(4.43)

where q is the global vector of degrees of freedom including all subsystems.

Within the Lagrange-d’Alembert principle, all non-potential effects can be introduced

as generalized forces and be collected into a function

Qnc : (q, q̇, t) 7→ Rn,

so that the equations of motion become

M(q) q̈ + C(q, q̇) q̇ + g(q) = Qext(t) +Qnc(q, q̇, t).

This term includes the following contributions:

QD(q, q̇) = −D(q) q̇, viscous/Rayleigh damping, derived from R(q, q̇) = 1
2
q̇⊤D(q)q̇,

Qext(t) = u(t), external inputs, control, or disturbances.

and potential other terms with general nonlinearities functions of (q̇i,qi). This

formulation allows additional oscillating components to be incorporated naturally:

each new subsystem contributes its own matrices to the total system, preserving the

full coupling between spacecraft and all flexible or fluid elements.
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Chapter 5

Model Description and User Guide

The theory presented in the previous chapters shapes a relative Simulinkmodel, which

this thesis has shaped in an initial form. This chapter aims to give a structure guideline

for a reader of the model. Here, all the derivation are explained in their applications

and the model created is described in its structure and its inputs and outputs.

The AOCS model that this thesis research for, was aimed to interface the slosh model

with an already coupled system, where the spacecraft had added dynamical terms from

control hardware, solar array or other structures.

The results found in the previous chapter create the base and the theory to shape

a model which is adaptable to different fluid, tank shapes(rectangular, cylindrical,

spherical and oblate(prolate)), tank dimensions, filling ratio and mission phase.

For this reason, some inputs and parameters need to be described before running

the model describing the switching condition and the dynamics of the modes. In

particular, in this chapter the ”general conditions” are going to be introduced as used

in the model.

5.1 Fluid Parameters

The propellant used in the tank can be different, and fewparameters describe its nature

impact on themotion. In particular, in a file of variables initialization, the fluid density

ρ and the fluid tension σ need to be set. For the currentmodel, the dynamics is based on

a fixed value of contact angle θc which is taken as θc = 0, which is found to be accurate

for common space propellants[NASA_Cold-sat][8]. If its precise value is available,
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it can be directly included in the formula of the Bond number as by definition. The

presented parameters enters as workspace variables computed at the beginning of the

simulation.

5.2 Tank Shape and Dimension

The tank shapes are labeled with a numbered constant that identifies Rectangular

shape with ”shape=1”, Cylindrical shape with ”shape=2”, and Oblate shape with

”shape=3”. All the parameters for spherical tanks are also derived but not yet included

in the files’ structure. The characteristic dimension of the tank is also needed with the

current inertia computation block, and can be set in the same file. Throughout the

proposed model structure, conditional blocks compute the needed parameters based

on the shape set at the beginning of the simulation.

Moreover, the functions found in Chapter 3 describing the evolution of parameters for

different tank shapes should be included in the Matlab function block of ”parameters

computation” which includes COM displacement and total propellant mass in the

current model. The last term is a linear decrease of the propellant with fill ratio that

can be easily shaped for any needed condition.

The MAIN file calls generate_fluid_tank_param, where the dimensions and the volume

of the tank are set in a switch case based on the shape description label. Here, the fluid

height parameter is computed as time-series with an approximation. The file should

be integrated with the resulting relation linking fluid height and fill ratio as in Chapter

3 3.18.

The shape-dependent parameters for Mode 2 and Mode 3 are dynamically computed

based on the variable shape within the model. For Mode 3, parameters such as

spring lengths are directly evaluated within the corresponding enabled subsystems.

More complex is the initialization of the Mode 2 masses’ positions, which depends

on both the fill ratio and the tank geometry and therefore needs to be calculated

during the simulation run-time. Within the Mode 2 enabled subsystem, the MATLAB

function mode2_get_param computes the equivalent mechanical parameters of a fluid

under microgravity conditions as a function of the tank geometry and the fill ratio.

Its inputs include the total fluid mass mtot, the apparent acceleration vector aB,

the liquid height h, a geometry selection parameter (caso, distinguishing between
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rectangular,cylindrical and oblate tanks), and the fill ratio fr.

For the planar setup, the fluid is modeled as three equivalent masses: two lateral

masses (m1 and m2) and one central mass (m3). Their vertical and horizontal

positions (z01, z02, z03, xm1, xm2) are determined according to the selected geometry.

For rectangular or cylindrical tanks, direct geometric relations are used, while for

oblate tanks an interpolation based on pre-defined data is applied to determine the

characteristic heights (amg, bmg) as a function of the fill level based on the results in

[19][9].

The model also computes the horizontal (k3x) and vertical (k3z) stiffness of the central

meniscus, estimated respectively from the apparent gravitational force (geff = ‖aB‖)
and from a characteristic fluid parameter. The horizontal damping coefficient c3x is

assumed for the case studied but the results from Section 3.5.1 should be applied for

each shape by the classical relation c = 2ζ
√
km.

Regarding the dropmode, no influence on its setup comes from tank shape except from

the length of the springs implicitly derived.

Finally, dimensions and shape of the tank influence strongly the whole computation

of static inertia executed in each mode. For Mode 1 the inertia is computed a simple

solid equivalent for each partially filled tank shape. For Mode 2, inertia is included

in the initial parameter computation proceeding with a base component of the fluid

non-implied in the meniscus (representative of Mode 1 inertia), then adding to it the

contribution of the lateral and central masses.

In particular, the static inertia of a partially filled tank can be estimated by treating the

fluid as a rigid body. For rectangular and cylindrical tanks, the fluid is approximated

as a block of height equal to the fill level. The inertia about a horizontal axis is then

computed using standard formulas:

Irect = mfluid
h2

3
+mfluid

B2

12
, (5.1)

Icyl = mfluid
h2

3
+mfluid

R2

4
, (5.2)

where h is the fluid height, B the rectangular width, R the cylinder radius, and mfluid

the fluid mass.

For spherical or oblate tanks, the fluid distribution is more complex. The inertia
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can be approximated by decomposing the fluid into horizontal disks corresponding to

the relative height cross-sections, by using hemispherical/ellipsoidal approximations

or simply by using rounded rectangular container values instead. These approaches

provide a practical estimate of the Ibase, representing the bulk fluidmass, which is valid

for both high-g and low-g static conditions.

In low-gravity conditions, it is needed to consider the fluid rise along the walls that

forms a meniscus. In the model, the contribution of the fluid rise along the wall

is computed by the parallel axes theorem applied to the discrete lateral and central

massesm1,m2,m3 located at positions (xi, zi):

Imeniscus = m1(x
2
1 + z21) +m2(x

2
2 + z22) +m3(x

2
3 + z23). (5.3)

The total inertia when considering the planar motion is computed as:

Itotal = Ibase + Imeniscus, (5.4)

Some additional investigations can be done also via CFD for the accurate inertia

computation. However, the presented framework is present in themodel to contribute

to a complete analysis.

5.3 Environment Inputs

To run the simulation in planar setup the acceleration and rotational behavior of the

tank can be shaped to represent different mission phases. These are designed in the

file generate_inputs that shapes the time-series vector for acceleration, rotation and

angular acceleration vector for various cases. launch represents launch conditions

by high magnitude [multiple g0 m/s2] acceleration varying in axes components due

to a slew rotation. This aspect is particularly interesting for the validation of the

body frame component when visualizing the high-g pendulum position during the re-

orientation. orbit takes typical angular rotations and low thrust by typical maneuvers

in orbit. In this case the magnitude of the acceleration is low [g0 · 10−1m/s2] and

the representative mode can vary for different tank dimensions and fluid densities,

potentially being already a representation of the intermediate Bond number range.

Also inputs from typical Comet-I orbit maneuver are included. idle represent no
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maneuvering spacecraft, which falls into low-g conditions. Different orbit levels of

effective gravitational accelerations are modeled to analyse respective behavior of

various sizes of tank. Other cases as separation try to model short impulses and

characteristic behaviors. If the 3D model is considered the inputs that need to be

shaped are forces and torques which govern the dynamics via generalised forces in the

respective EOM derived from the Lagrangian. These are the external contributions to

the motions when the tank motion is described by all degrees of freedom.

5.4 Switching Condition

In the computational implementation of the model, the switching condition has been

at first model as sharp switch between stable modes. However, it has been considered

valuable to design a more physical and gradual transition from a stable mode to the

other. A approximate system has been written but it does not result fully integrated

with the functional model. In particular the model considers an intermediate range

0.1 < Bo < 10 where the two extremes are related by a connecting function, such

that the intermediate dynamics of the fluid is defined as influenced by both modes.

As mentioned in previous sections, the transition from low-g dominance to high-g

dominance can be considered logarithmic. For this reason, the two ranges can be

connected by a logarithmic function of Bo. The relative weights of these two mode

are:

w1 = max

(
0,

(
min

( logBo− log0.1

log10− log0.1
, 1)

))
w2 = 1− w1

This represents a stable intermediate configuration in a range where any dominance

can be established by analytical or experimental results reviewed. When the drop is

activated, the weight of its mode is based on the transition time passed as

w3 =

(
1− t

ts

)
Then all the computed weights are normalised to have a total weight of 1. In

such way mass stays constant and defined from function parameters, and does not

create unjustified extra energy of the system. The same attention should be put
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to other variables computed in the dynamics. For the output of evolving DOF

overlapping some fine averaging could be necessary on the generalised coordinate and

its derivatives.

From this derivation, the total configurations are: dominance of Mode 1 (stable),

dominance of Mode 2 (stable), intermediate range with constant Bo value (stable),

transition with drop activated (unstable, lasting ts). The modes’ weights are computed

in the Bond number block and all the dynamics subsystem are run in parallel. The

respective outputs are weighted after the dynamics computation to output forces,

torques and MOI. This part of the implementation in the model is not completed and

needs to be reviewed and made functional on this base.

Naturally, such switching behavior is thought to output smoother functions and not

to represent modes as separated fluid motion. However it is only a draft on which to

elaborate when validation results are available.

The model can be run in a planar setup with a sharp-switch condition, providing

outputs for position and forces. However, it requires further refinement to incorporate

all the theoretically derived parameters and three-dimensional dynamics, which the

author could not include within the time-frame of the thesis. Priority was given to

establishing the functions and equations together with the Simulinkmodel framework.

As an initial step of validation, the input parameters can be adjusted to simulate

experimental setups reported in the literature, allowing comparison of the model’s

force outputs with commonly measured experimental values. However, identifying

representative experiments for all required cases may not be trivial. In general, for

preliminary results under low-g and high-g conditions, the oscillation frequencies

and position vectors have been compared to analytical values and realistic maneuver

scenarios, showing satisfactory agreement. Due to the complexity of the setup,

validation of the equations and functions requires ad hoc experimental setups, using

pressure sensors or optical devices to track oscillatory behavior, or computational fluid

dynamics (CFD) simulations to fine-tune and correct parameters based on analytical

studies.
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Conclusions

The aim of this thesis was to investigate the phenomenon of sloshing, both from the

perspective of its physical behavior and its influence on spacecraft maneuvering and

stability. Sloshing is of particular concern in the AOCS domain because the movement

of fluid can shift the spacecraft’s center of mass and generate forces and torques that

could destabilise the structure or the efficiency of AOCS hardware itself. A review of

the existing literature revealed that a common approach to address sloshing is through

CFD, which, although accurate, is computationally expensive and less practical for

simulations.

Recognising these limitations led to a key objective of this work: the development of

a sloshing model that preserves physical accuracy while remaining computationally

efficient for use in AOCS simulations. The importance of such modeling lies in the fact

that propellant mass can account for a substantial portion of a spacecraft’s total mass.

Therefore, fluid motion can strongly couple with spacecraft dynamics. If uncontrolled

or unaccounted for, this coupling can compromise stability, control and performance.

In particular, resonances between fluid oscillations and spacecraft structural or control

frequencies must be avoided to prevent detrimental amplification effects.

To address these matters, studies spanning from the 1960s to the present day

were reviewed, and data were collected from experiments and analyses on different

tank geometries and operating conditions. These datasets were organised and

merged to establish parameters for mechanical equivalents across different mission

stages. Combining results from diverse experimental setups was especially valuable in

addressing variations in tank geometry, as very few experiments have examined the
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same behavior across all common tank shapes. Based on these data, new models were

developed and analysed in greater depth.

A key contribution of this thesis is the development of fully coupled equations for

three different mechanical-equivalent models of sloshing, thereby extending their

applicability to a wider range of spacecraft configurations. Different phases of the

missionweremapped to representativemodes, eachwith derived governing equations.

A switching-mode system was implemented, and a Simulink model was created for

integration into an AOCS simulator. Inputs and outputs were selected to match OHB’s

AOCS dynamic model, ensuring compatibility with industrial simulation frameworks.

The ability to switch between distinct sloshing models during a mission is a novel

feature of this work, enabling accurate representation of varying fluid behaviors under

different operational regimes.

The model structure allows for the implementation of multiple oscillating subsystems,

which is particularly advantageous for modular AOCS setups. It is designed to operate

under any thrusting or maneuvering condition, tank geometry, or propellant type,

making it versatile and reusable across a broad range of spacecraft projects.

In particular the following modes have been shaped, and combined in transient states,

for the analysis: Mode 1 describes high magnitude effective acceleration applied to the

tank. The fluids accumulates on the tank in the direction of the effective acceleration

and undergoes to potentially high amplitude oscillations: Mode 2 describes the

behavior of the fluid in microgravity. The fluid configures in the tank in different

way, modifying the mass distribution of the the tank, while the oscillation are slower

and of smaller amplitudes. Mode 3 is a transitory state describing part of the fluid

concentrating in a drop, free moving in the tank.

6.1 Discussion

The developed models preserve the key parameters as oscillation frequency and main

masses motion consistent with the physical fluid motion. Nonetheless, to produce and

derive governing equation which were both analytically and intuitively accessible and

tunable some simplifying assumptions were required.

• Only the first sloshing mode was considered relevant and modeled for all three

representations.
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• Some parameters still rely on linear approximations even for curved tanks,

particularly in Mode 2 for the skidding of lateral masses.

• In Mode 2 and Mode 3, the discrete distributions of masses and springs were

intended as initial approximations of continuous mass and force distributions.

These could be refined by using annular rings for the raised fluid mass or by

increasing the number of springs to better capture the spherical elastic response.

A further challenge was the lack of comprehensive datasets covering all combinations

of tank shape, fill ratio, and gravity level for the oscillation characteristics of

the capillarity-dominated case. This limitation led to certain parameters being

estimated from incomplete information, and these should be revisited through

targeted simulations or experiments. Finally, as discussed at the end of the previous

section, the application of the actual Simulink model are, at the moment, limited to a

planar case. All the theory needed to set up the equivalent 3D case are all presented in

these thesis, basically focusing only on the different EOMderivedwithmultiple degrees

of freedom. The set up of the switching logic can be kept the same.

6.2 Future Work

The present model is fully functional and integrated into

Simulink for most components, with some equations already computed and ready for

block implementation. For the next steps of this project, it is important to validate the

output results of this thesis work and proceed with the integration of the model with

the complete AOCS framework. In particular:

• Experimental validation: testing selected tank geometries under controlled

conditions to verify oscillation frequencies, damping behavior, and coupling

effects with spacecraft motion. While challenging in an industrial environment,

such experiments would provide high-confidence validation for the simplified

mechanical-equivalent approach.

• CFD-based validation: running CFD simulations for different tank geometries,

fill levels, and acceleration/rotation profiles to generate reference data.

Extracting key parameters (forces, interface shape, oscillatingmass, total system

energy) for comparison with themechanical-equivalent outputs. These would be

then used to tune or modify parameters shaped in Mode 2 and Mode 3, and in
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curved tanks.

• Controller design and integration: using the present model as plant for the

designing of feedback and feedforward control laws. These could be tested to

damp the disturbances of sloshing actively, while being integrated within the

AOCS simulation environment to assess its impact on pointing stability and

maneuver accuracy.

• Switching system refinement: the switching system, implemented both in

discrete and continuous form, is generalised and uses representative but

simplified thresholds, especially for Mode 1 and Mode 2 dominance. These

thresholds should be tuned based on monitored parameters from simulation or

fight-data when available. This would ensure higher accuracy and reliability of

the model in different mission phases.

• Non-linearised model -physical constraints: the physical constraint of the tank

geometry and components should be analysed with regards to the impact on the

equivalent model dynamics. Analysis on the effects should also be performed

to see the actual impact of possibly incoherent geometry on the actual dynamics

results.

• Swirling and spinning: more work should be done to define the lever of

relevance of the fluid swirling or spinning during flight and in case to add modes

representing these conditions. As for current situation, the spinning has been

considered only along the longitudinal axis in a separate mode not fully wired to

the rest of the model.

In conclusion, this thesis delivers a flexible, reusable, and broadly applicable sloshing

model that combines physical accuracy with computational efficiency, making it

suitable for a wide range of spacecraft configurations and mission profiles. Before

advancing to control design, the model should be thoroughly verified through targeted

experiments and high-fidelity CFD simulations to ensure its predictive accuracy

under different operating conditions. Once validated, the natural next step is the

development of a dedicated controller capable of actively mitigating sloshing effects,

thereby enhancing the stability, precision, and reliability of future spacecraft AOCS

systems.
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