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Abstract

As space missions impose increasingly strict requirements on spacecraft attitude
control and maneuverability, shaping an accurate yet efficient model of propellant
sloshing becomes essential. Such model not only support advanced control strategies
but also enhance mission safety and reusability. This work adopts a mechanical-
equivalent approach that reproduces key physical behavior as effective inertia, slosh
modes, and mass displacement, while maintaining computational efficiency. The
model is implemented in Simulink for direct integration with the Attitude and Orbit
Control System (AOCS).

Firstly, a complete parameter set is derived as a function of fill ratio for representative
tanks in both low-g and high-g conditions. Then, a modular structure is introduced,
using the Bond number (Bo) as the switching condition between regimes. Three
configurations are addressed: stable high-g (Mode 1), stable low-g (Mode 2), and
a transitory state (Mode 3), with a mixed regime spanning the transition between
capillarity- and gravity-dominated behavior. New formulations for Modes 2 and 3
are developed, and their parameters are characterized. Finally,the coupled interaction
between sloshing and spacecraft dynamics is analyzed, and the general model

applicable across mission phases, tank geometries, and fluid types is provided.

Keywords

Slosh, Sloshing model, Attitude and orbit control system, spacecraft dynamics

coupling.
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Abstract

Niar manga rymduppdrag stiller allt hogre krav pa rymdfarkosters attityd- och
manoverkontroll blir det avgorande att utveckla en modell av drivmedelssvangningar
i tankar som ar bade noggrann och berdkningseffektiv. En sddan modell mojliggor
inte bara avancerade styrstrategier utan bidrar ocksa till okad sidkerhet och
ateranvandbarhet. I detta arbete anviands en mekaniskt ekvivalent metod som
aterger centrala fysikaliska egenskaper — sasom effektiv troghet, svingningsmoder och
massforskjutning — med bibehallen berakningseffektivitet. Modellen implementeras i
Simulink for direkt integration i Attitude and Orbit Control System (AOCS).

En fullstandig parameteruppsattning harleds som funktion
av fyllnadsgrad for representativa tankar under bade ldg-g- och hog-g-forhallanden.
Darefter introduceras en modular struktur dar Bond-talet (Bo) anviands som kriterium
for overgang mellan olika regimer. Tre konfigurationer behandlas: stabil hog-g
(Mode 1), stabil lag-g (Mode 2) och ett 6vergangstillstaind (Mode 3), samt ett blandat
tillstdnd som beskriver skiftet mellan kapillar- och gravitationsdominerat beteende.
Nya formuleringar for Mode 2 och Mode 3 utvecklas och deras parametrar bestams.
Slutligen analyseras den kopplade dynamiken mellan svangningar och rymdfarkostens
rorelser, och en generell modell presenteras som kan tillaimpas pa olika uppdragsfaser,

tankgeometrier och vatskor.

Nyckelord

Slosh, Sloshingmoder, Attityd- och omloppskontrollsystem, dynamisk koppling.
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Nomenclature

L Lagrangian

L Lagrangian in translating frame

Ly  Lagrangian in inertial frame

v Kinematic viscosity (m?/s)

Q Rotating frame angular velocity (rad/s)
w Angular velocity (rad/s)

o Velocity Potential (m*/s)

o Surface tension (N/m)

0. Contact angle (deg)

¢ Damping ratio
A Surface area (m?)
a Acceleration (m/s?)

Bo  Bond number

d Tank diameter (m)

E Energy (J)

E;  Energy in inertial frame (J)
E, Kinetic energy (J)

fn Natural frequency (Hz)

Fr  Froud number
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Gravitational acceleration (m/s?)

Fluid height (m)

Tank height (m)
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ith-Hinge point distance (m)
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Chapter 1

Introduction

This thesis addresses the development of a Simulink model to represent the sloshing
phenomenon. In general, the term sloshing refers to the oscillatory motion of a liquid
inside a container when subjected to external accelerations or rotational dynamics.
Understanding this behavior is essential in both terrestrial and space applications,

though the associated risks and operational requirements differ significantly.

As for terrestrial context, an example of sloshing can be found on trucks transporting
liquids in large containers mounted along the length of the vehicle itself. The motion
of the liquid is influenced by road irregularities, such as bumps or sudden turns,
which can shift the truck’s centre of mass in unpredictable ways, increasing the risk
of rollover or loss of maneuverability. Space applications involve instead some further
complexity. On Earth, gravity provides a constant stabilising acceleration that governs
fluid motion. In space, however, objects experience conditions of near weightlessness
because they are in continuous free fall around Earth. During a space mission, both the
magnitude and direction of accelerations and rotations can vary significantly across
different flight phases. Conditions range from the high accelerations experienced
during launch, to prolonged periods of microgravity when the spacecraft is in a
quiescent or idle state. This variability creates many possible configurations and
motion that the fluid would follow, all of which need to be tracked and studied to

maintain performance and to ensure mission safety.

In a spacecraft, the subsystem most affected by sloshing dynamics is Attitude and
Orbit Control System (AOCS). This subsystem is responsible for controlling and

maneuvering the spacecraft, which requires precise tracking of the inertia distribution
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in all configurations, as well as accurate knowledge of both the static and dynamic
Center of Mass (COM). As the name suggests, the dynamic component of the COM
is influenced by all motion within the spacecraft. This includes the deployment or
movement of solar panels or booms, optical equipment pointing maneuvers, and,

importantly, the movement of propellant inside the tanks.

Accurate knowledge of how the fluid moves and settles is a significant advantage for
spacecraft control using reaction wheels and thrusters. If the motion of the fluid
is not represented in the AOCS algorithm, it becomes an unmodelled disturbance
in the control loop. While control systems are often designed to be robust to
such disturbances, performance and accuracy improve significantly when the control
algorithm accounts for the actual motion in advance. The pointing accuracy
requirements for many modern satellites and spacecraft have risen to extremely
high standards in recent missions. Earth observation satellites such as Sentinel-2
require angular stability in the order on 10~° rad for submeter image resolution [21].
For astronomy missions, like James Webb Space Telescope (JWST), it can demand
stability below 7 milliarcseconds to keep images non blurred after long exposure[20].
But these is also true for communication satellites, especially when they present
high data-rate. Such levels of precision leave very little tolerance for unmodelled
disturbances such as propellant sloshing, especially during critical maneuvers or fine

pointing phases.

Sloshing analysis therefore becomes an essential consideration in the design of control
algorithms for missions requiring high precision. The present work investigates
previously used modelling approaches through a literature review and develops a
suitable model for the various phases of a typical space mission. This model is
designed with consideration of general space environment characteristics, required
manoeuvres, common tank geometries, and typical interfaces between the sloshing

model and other components of the AOCS algorithm.

1.1 Motivation

The motion of fluid in spacecraft tanks can represent a significant fraction of
the total spacecraft mass moving in an uncontrolled manner during each phase
of a mission. This not only affects the geometric and mass properties of the

system but also poses direct risks to mission safety. Uncontrolled fluid motion can
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compromise spacecraft maneuverability, potentially overwhelming the capabilities
of AOCS hardware, including reaction wheels and thrusters. Moreover, resonance
between the fluid motion and the spacecraft’s structural or control system frequencies

could lead to catastrophic build-up, ultimately causing mission failure.

As modern missions impose increasingly tight performance requirements, the
allowable margin for unmodeled disturbances becomes minimal. Accurate knowledge
of all spacecraft subsystems is essential to ensure maximal performance. This
is particularly critical for high-precision pointing and proximity operations. For
instance, the European Space Agency (ESA) Comet Interceptor mission aims first
to detect and select a comet based on in-orbit observations. After handling precise
thrusting maneuvers at relatively high accelerations, the spacecraft will have to
accurate point its instruments towards a comet. This is required to be performed in
high accuracy while in microgravity conditions. The conditions of the encounter are
considered to be possibly inducing some transitory motion in the tank due to impact

of dust and precise impulses.

Experimental studies of fluid motion, such as those conducted on the International
Space Station (ISS), provide insights into the fundamental behavior of fluids in
microgravity aimed to a scientific undestanding of the phenomenon but with
no practical solution or uses. Meanwhile, other investigations are based on
computationally intensive methods to simulate fluid dynamics under various
conditions. In aeronautics, fluid dynamics in containers has been extensively
studied using both analytical approaches and Computational Fluid Dynamics (CFD)
simulations. One commonly used technique for sloshing studies is the Volume of
Fluid (VOF) method, which allows precise tracking of the fluid surface deformation.
Compared to simpler methods (e.g., potential flow or shallow-water approximations),
VOF provides more accurate predictions of spatial distribution, forces exerted on tank
walls, and fluid shape under dynamic excitation. All these parameters are indeed

highly important for a control environment on a spacecratt.

However, while CFD provides high-fidelity results, it is too computationally expensive
to integrate directly into AOCS simulations. Therefore, sufficiently accurate models
which also maintain light computational costs are required for real-time control
applications. Traditionally, passive control techniques, such as baffles or bladders,

have been used to mitigate sloshing. Actively controlling sloshing, however, could

3
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eliminate the need for internal hardware, reducing spacecraft mass, cost, and
manufacturing complexity. An accurate sloshing model offers a strategic advantage
for spacecraft manufacturers by enhancing safety, reliability, and overall mission
performance while reducing both operational and environmental risks. It is worth
noting that detailed knowledge of how AOCS systems handle sloshing is rarely
public, making research in this area both more challenging and especially needed.
Apart from technical performance, the usage of passive hardware has impact on
budget and sustainability due to lack of reusability and manufacturing demands.
Missions where sloshing is not properly modeled pose safety risks to the spacecraft
and payload, potentially causing mission failure or environmental contamination.
Accurate, reusable, and actively controllable sloshing models help ensure mission

success while reducing environmental impact.

From an industrial perspective, the sloshing model must be computationally efficient,
easy to use, and adaptable to various spacecraft designs. Following a modular structure
ensures reusability across projects without major redesigns, facilitating integration

with other subsystems and enabling future controller development.

1.2 Problem Statement

The real added value of this thesis lies in addressing the gap between scientific
and demonstrative experiments, CFD simulations, and linearised analytical models.
Current knowledge about sloshing, as presented in publicly available literature, is
often not structured in a way that is suitable or convenient for application within
an AOCS environment. Existing works have largely focused on specific experimental
tanks or setups, without developing a generalised model that can adapt to different
tank geometries, fluids, and external conditions. Such generality is essential to ensure

reusability across a variety of applications.

Furthermore, current approaches either demand significant computational
resources—making them unsuitable for fast, system-level analysis—or oversimplify the
physics, reducing their representativeness of real behaviour, especially in the case of
large-amplitude oscillations. A physically justified, computationally efficient model

capable of representing a wide range of motion types is still lacking.

In addition, industry requirements are rarely integrated into academic research on

4



CHAPTER 1. INTRODUCTION

this topic. This work addresses that gap by developing a generalised sloshing model
that not only incorporates physical accuracy and computational efficiency but is also
designed for full integration into the existing simulation environment at OHB. The
ultimate goal is to deliver a model that is reusable, physically sound, and directly

applicable in industrial contexts.

1.3 Outline

The following chapters present the outcomes of this work in a structured manner.
Chapter 2 introduces the theoretical background and the methodology used for the
derivations that follow. Chapter 3 builds on the existing literature to justify the
mechanical equivalent method and highlight its advantages, while also presenting the
models used in this thesis along with their physical foundations. Chapter 4 details the
equations derived to describe the different modes, their parameters, and the associated
switching logic. Chapter 5 presents the structures and the inputs of the used Simulink
model with inputs for its verification. Finally, Chapter 6 discusses the conclusions
drawn from this work and reflects on its achievements, while also outlining directions

for future research.



Chapter 2

Theoretical Background

This chapter gathers the essential theoretical explanations that, in later chapters, may
be assumed as known. Presenting them here ensures the reader has a clear reference

point.

The subject of this thesis draws on knowledge from multiple fields: fluid dynamics,
control theory, modelling, and analytical mechanics, as well as structural dynamics for
understanding natural frequencies. It also requires familiarity with aspects of space
missions, including the hardware used for manoeuvring and the various environments

a spacecraft may encounter during its mission.

While it is assumed that the reader is already familiar with most of these topics, brief

overviews and reminders are provided here to establish a common foundation.

2.1 Resonant Frequency and Structural Dynamics

Every mechanical system has natural frequencies at which it tends to oscillate when
disturbed. These resonant frequencies depend on the system’s mass distribution and
stiffness. For simple systems as single Degree of Freedom (DOF) oscillation mass, the
natural frequency is simply derived from f,, = %\/%, with & being the stiffness and
m the mass of the oscillating body. While for more complex and compound systems
as spacecraft, analytical methods like Finite Element Method (FEM) can be used,
or alternatively vibration tests are common on space components but not as easily
accessible. These ways both deliver the set of natural frequencies and corresponding

mode shapes which characterise the specific body.



CHAPTER 2. THEORETICAL BACKGROUND

When an external excitation is applied to a system with near natural frequency,
resonance can happen. Indeed, oscillations can be significantly amplified to the limit
of becoming a structural risk. In spacecraft, structural resonances can couple with
other dynamic phenomena, such as fuel sloshing or flexible appendages oscillations,
potentially leading to large attitude disturbances or even control instability. For tanks
containing liquid propellant, the sloshing motion has its own set of natural frequencies,
often computed using analytical approximations or CFD simulations for more complex

cases.

It is important to model these oscillations, which can also change in range under
different external conditions. This is relevant not only for structural safety,that
however is usually out of danger because of the different ranges in natural frequencies
for structure and fluid sloshing; but also because resonance can occur with control
system frequencies. This fluid-control interaction can amplify oscillations, degrade
pointing accuracy, and in some cases lead to instability if not properly accounted for

in the design.

2.2 AOCS Hardware

It is valuable to review the types of control hardware present on a spacecraft, as
the outputs of these devices are the main inputs driving the motion of the fluid.
To maneuver a spacecraft in the classic six degrees of freedom (three rotations
and three translations), reaction wheels and thrusters are typically employed. The
number of these components may vary between spacecraft and redundancy is typically

maintained.

Reaction wheels are momentum exchange devices used to control a spacecraft’s
attitude without consuming propellant. Each unit consists of a flywheel driven by
an electric motor; by changing the wheel’s rotational speed, the spacecraft’s body
rotates in the opposite direction due to conservation of angular momentum. Reaction
wheels enable precise, continuous control and are commonly used for fine pointing
in applications such as Earth observation or astronomical missions. Their main
limitations are restricted torque capability and the potential for saturation over time
if external torques (e.g., from gravity gradients or solar radiation pressure) are not

counteracted.
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Thrusters provide direct force and torque by expelling mass at high velocity, in
accordance with Newton’s third law. Depending on mission requirements, they may
use chemical propulsion or electric propulsion. Within the AOCS framework, thrusters
are often employed for fast attitude maneuvers, reaction wheel de-saturation, or as
backup attitude control devices when reaction wheels are insufficient or unavailable.
Unlike reaction wheels, thrusters consume propellant, making their use a key factor in

mission lifetime management.

2.3 Landau Derivation for Moving Frame

The motion of the fluid in the tank must be described by Equation of Motion (EOM)
that provide all relevant information about the fluid mass position and its evolution
over time. In this thesis, the EOMs are derived using the Lagrange formalism, which
is particularly useful for tracking the evolution of the (DOFs) even in complex, coupled
systems. Moreover, the Lagrangian approach offers direct insight into the system’s
energy balance, which can serve as a valuable tool for assessing the physical reliability
of results. Monitoring the evolution of the system’s energy and its conservation in the

right configurations can be implemented in the model as a tool to check validity.

For this reason, the Landau formalism for deriving equations of motion in a non-
inertial frame is presented here, along with its impact on the energy terms. The
non-inertial frame is especially relevant for this work, as the spacecraft environment
involves both acceleration and rotation. This contrasts with most experimental setups
found in the literature, which are typically conducted on stationary tables in laboratory
conditions and do not present the coupling effects and non-inertial forces that are

present in an actual spacecratft.

It will be considered a moving frame, in particular one which is accelerating with
acceleration ¢ and rotating with angular velocity w , with respect to an inertial frame.

In the inertial frame, the Lagrangian is

1
Lo = imvg —U (2.1)

and the equation of motion derived from it is

d?}() . oUu
M= "% (2.2)
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Because 222 = mu, and that derived in time is 24 while the Lagrangian partially

ov
derived for the position vector is 25 = —2¢,

If the equations of motion are instead derived in a non-inertial reference frame, the

dt\ov ) or -3

Lagrangian is still

because it is based on the least action principle which is independent of the frame.
However, the transformation £, — £ must be defined. It can be considered a process
in two steps, defining first a translating frame K’, characterised by moving with a

velocity V() relative to the frame K|, such as
vo ="+ V(t) (2.4)
Substituting this expression in L, it gives
C= %m(u’2 V) 4+ 20V (1) (2.5)

The second term in the summatory can be omitted if the focus is on the motion of the
accelerated frame only, since it can be substituted with a function of time in some other
parameter in frame K’. Considering v' = % the last term can be expanded in

dr’ d av

! —  —_ = N ./_ .
mv'V =mV o mdt(V ') M7 (2.6)

that when is substituted in £’ results as

L = Gmv” —m—r’ — U (2.7)

where 22 = a(t) is the translational acceleration of the frame K’. In the Lagrangian

derived in K, one extra term appears, compared to the inertial frame:

dv’ oU

mE = 87’ (t) (2'8)

This means that the equations deriving from the last expression are equivalent to those
for the motion of a particle inserted in an homogeneous force field, equal in magnitude
to the mass of the particle (m) multiplied by the acceleration a but with opposite

sign.
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Considering now the transition K\’ — K, where K is a rotating frame with angular

velocity €2(t) relative to K’. The velocity is now expressed as follows

vV=v+Qxr (2.9)

and, when substituted in £, gives the relative Lagrangian £
1
EzQm(v2+2v~§2><7’+(Q><r)2)—U—ma~r (2.10)

which represents the Lagrangian in an arbitrary - potentially not inertial - frame.

Also it can be rearranged muv - Q x dr = mdr - v x Q and the Lagrangian differential

becomes

ou
dﬁ:mdv-v—l—mdv~er+mv-Qxdr—l—m(QXT)-(Qxdr)—E-dr—ma-dr (2.11)

The components to derive the governing equations are derived as

oL

5y = MY +m(Q x r) (2.12)
oL ou
E—mvxﬂ—l—m(QXT)xQ—E—ma (2.13)

A N 0 oL _ i .
and combining in £ <%> — % = 0, it results as:

d .
m—U:vaXQ—mer—mQx(er)—a—U—ma (2.14)
dt T T —_———— or vD
C

It is valuable to notice that the labeled terms represent particular pseudo-forces in the

non inertial frame:

« Aterm: Coriolis force, linear term in velocity derived by the rotation of the frame

on a moving particle, perpendicular to its motion.
« B term: Euler force, present in frames characterised by varying angular velocity.

« C term: Centrifugal force, it acts perpendicular to the rotation axis and to the

position vector, pushing the particle out of the curved trajectory.

10
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« D term: translational force, it has the same magnitude but different direction

than a force applied to the frame with same acceleration.

All these forces are present due to the non-inertial nature of the frame considered, the
body frame. The the motion of the frame, even if they are not forces directly applied to

the internal model, affect the relative equations of motion.

To define the evolution of the single degrees of freedom, when Lagrangian are used,
it is needed to complete the derivation in a scalar way, starting from the vectorial
Lagrangian in 2.3. For each of the degrees of freedom there is one describing equation,
coupled with others degrees of freedom. To compute resulting force can be necessary

to shape the position vector deriving from one or more DOF.

2.3.1 Energy Evaluation Moving Frame

When considering the energy stored of the system in the accelerated frame, part of
the potential energy associated with the pseudo-potential energy as —ma, that acts
as a gravity potential in the body frame, actually appears within the kinetic energy
expression, as it contributes to the velocity of the mass. In the same way, the so-called
centrifugal potential energy introduces additional terms directly into the kinetic energy
E,.. The only terms which remain ’proper’ potentials are the elastic/surface/thermal
potential energy and the gravitational field influence on the mass, even though its
magnitude may be very small. However, in a non-inertial frame, the total energy is

no longer a constant of motion as it is in an inertial reference frame. While in the

dEy _

-2 = 0 holds in absence of dissipation,for the energy

inertial frame K, the condition

expressed in the non-inertial frame F(K) a more detailed analysis is required.

To evaluate the energy and its change between frames it is convenient to take into
consideration as not inertial frame, a frame rotating with constant angular velocity
2 = const and with no translational acceleration, to ease the computation without

reducing the validity of the results.

For this case, the Lagrangian in 2.3 simplifies to

ﬁ:%mv2+mv~§2xr+%m(QXT)2—U (2.15)

11
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and the derived equation of motion is

d oU
md—::2mvxﬂ+mﬂx(rx§2)—§ (2.16)
While, when considering energy,it can be derived from the linear momentum as £ =
p - v — L where the linear momentum p is
oL

— — =mv+mwXr (2.17)
v

Hence the energy is expressed as

1 1
E:mvz—l—mv-ﬁXr—§mv2—mv-er—§m(Q><7“)2—|—U

1 1
= émv2 - ém(Q xr)?+U

(2.18)

The second term of this expression is added due to the rotation of the frame and it is
a contribution of centrifugal potential energy. The velocity of a particle in frame K is

vy = v + Q x r, and the linear momentum becomes

p=mv+m-QXr (2.19)

Po = muv + Q X r=mu (2.20)

The linear momentum remains constant in different frames py(K,) = p(K). When

considering the angular momentum the derivation brings to an equivalent result

My =1 X pg (2.21)
M=rxp (2.22)
= My=M (2.23)

However, it is important to underline that £, # E, therefore it is not possible to
use the energy conservation as indicator of physical correctness, because in a non
inertial frame, even without dissipative terms, the energy is not constant. In particular,

considering 2.18, and substituting in it v = vy — Q x r the new expression of the energy

12
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in frame K is

1
E=-mvi+U—muvy-Qxr
2 (2.24)
:Eg—mUQ'QXT

that results in the transformation law from an inertial to a non inertial frame
E(K) = Eg(Ko) — M - Q (2.25)

So, to consider the energy as term of verification of the physical meaning of the
system some steps must be done to adapt it to the frame of work, e.g adding the
extra term referring to angular momentum when analysing the body frame. This is a
useful derivation since many simulations have been done considering only the inputs
of acceleration and rotation of the tank in the sloshing model, without considering
the complete coupled equations. Otherwise the velocities and acceleration can be

translated in inertial frame where energy conservation still holds.

2.3.2 Related Work

As historical component, liquid sloshing in spacecraft propellant tanks has been
extensively studied since the early days of spaceflight. The initial work by Abramson
[1] presented one of the first systematic analyses of the dynamic behavior of liquids in
moving containers. Building upon this, Dodge and Garza [9] investigated low-gravity
sloshing in spherical, ellipsoidal, and cylindrical tanks, providing empirical scaling

laws still widely referenced.

Further contributions by Dodge and collaborators [8, 10] refined these models,
leading to the development of equivalent mechanical models, which approximate the
sloshing liquid as discrete masses with spring—damper connections. These analytical
approaches remain essential for control-oriented modeling due to their computational
efficiency [14, 15]. Instead, with the advancement of computational capabilities, high-
fidelity numerical simulations have been adopted to study sloshing in low- and micro-
gravity environments for the specific case treated but usually not generalizable. In
particular, Yang and Peugeot [22] extracted sloshing parameters via CFD to enhance
spacecraft attitude dynamics models, while Hahn et al. [12] analyzed nonlinear

propellant sloshing and its effects on AOCS. Luppes et al. [19] also performed
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numerical simulations of liquid motion under microgravity.

Recent approaches combine analytical models with CFD-derived coefficients for
accuracy and real-time feasibility, as discussed by Bourdelle et al. [3] and Alazard et
al. [2].

Beyond classical sloshing, low-gravity propellant management often involves capillary
and multi-phase phenomena. Foundational work by De Gennes et al. [6] describes
drops, bubbles, and wetting dynamics. Capillary and methods for propellant
positioning have been explored by Collicott [4] and Hart et al. [13]. Bubble motion
in spherical tanks was analyzed direct numerical simulation by Dalmon et al. [5], and
oscillating drop techniques were revisited for low-gravity applications by Egry et al.
[11]. Experimental campaigns have historically provided critical validation for sloshing
models. Notable examples include the hydrazine tank slosh studies by Kana and Dodge
[16] and the COLD-SAT cryogenic experiments [NASA_ Cold-sat]. Drop tower and
parabolic flight campaigns remain relevant for characterizing transitions from normal

gravity to microgravity conditions [18].

Finally, recent research focuses on hybrid analytical-CFD models, multi-mode
nonlinear sloshing, and the inclusion of thermo-capillary and cryogenic effects for
long-duration missions. These trends aim to bridge the gap between the fidelity of

CFD and the computational requirements of onboard control models.
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Methods

In order to describe the motion of fluid within a spacecraft tank, several aspects must be
considered. Parameters such as the physical and chemical properties of the liquid, the
geometry of the container, the type of external inputs applied to it, and the presence of
devices inside the tank are just some of the factors influencing the dynamics. The fluid
behavior follows the governing equations of fluid dynamics, obeying the conservation
of mass, momentum, and energy, within the boundary condition of no penetration
through the tank walls. These boundaries differ for each geometry, shaping the unique

response of the system.

Numerical simulations and computational methods based on these equations achieve
high-fidelity results. Post-processing these results allows for extraction values of key
quantities then possibly integrated with further analysis. Examples of data extraction
are the forces acting on the container walls, the excursion of the centre of mass
(COM), and other parameters like the shape and size of the liquid-gas interface. The
former group is essential for computing the spacecraft’s overall dynamics and both
the static and dynamic inertia of the subsystem and the whole structure. The latter,
instead, is particularly important in describing the surface energy stored in the fluid
during mission phases where capillary forces dominate over inertial and gravitational

ones.

Moreover, modal analysis, often conducted using FEM, reveals the oscillation modes
of the fluid. This information must be taken into account in the control algorithms
implemented in the AOCS software to avoid resonance with main structure vibration

modes or those of appendages (e.g., deployable booms or solar panels) and with the
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control frequencies.

However, such numerical analyses are too computational expensive to be executed
in an AOCS simulation, for which operational efficiency is an important aspect of
evaluation. For this reason, data from experiments and simulations are gathered and
processed offline to develop alternative, reduced-order models capable of delivering
the necessary information to the onboard software. This knowledge is then used
to perform active control via reaction wheels and thrusters, mitigating disturbances

caused by fluid motion.

Based on these premises, the concept of the mechanical equivalent method is
introduced. By applying the fluid dynamics equations to a general case, the
liquid’s behavior can be represented through a combination of well-chosen kinematic

constraints and basic mechanical components.

This approach was originally developed by Abramson in [1] and has since been used in
numerous studies, often validated through comparison with analytical solutions from
fluid dynamics equations and numerical simulation results. The method offers a robust
framework for modelling different sloshing behaviors under varying gravity levels
and tank excitation profiles. The most relevant cases are presented in the following

sections.

3.1 Justification of Mechanical Equivalence

When the precise fluid shape and detailed behavior are not a priority, the fluid motion
can be represented using an equivalent mechanical model, which is easier to simulate
and modify. This is precisely the case for sloshing behavior handled by AOCS software.
The framework itself requires, as inputs from the slosh model, the forces and torques
generated on the tank, the mass distribution of the fluid (to compute inertia), and
the oscillation modes that might interact with other parts of the structure. All this
information is fed to the control algorithm to dampen internal disturbances caused
by fluid motion. The necessary knowledge is more related to the overall motion and
mass displacement than to the precise surface configuration of the fluid, with some

additional data on higher eigenmodes.

To accurately capture dynamic behaviors such as oscillations, forces, and dynamically

changing inertia, the mechanical equivalent cannot rely solely on a rigid-body
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representation of the fluid. This is demonstrated in [1] which considers a cylindrical
tank with coordinates (r,0, z) and its longitudinal axis directed along +z. The liquid

reaches the height & , partially filling the container.

The velocity potential of the liquid ® satisfies Laplace’s equation:
Vip =0 (3.1)

with boundary conditions at the tank walls:

0P
— =V, 2
o (3-2)
where V,, is the normal component of the tank velocity. Considering the potential, at
the tank wall on the normal (n) direction it is constraint to have the value of V,, . At the

free surface the potential follows

0P

‘.154‘9@ =0 (3.3)

The potential can be considered as the sum of two components ¢ = &, + ®, where
®, satisfies only Equations 3.1 and 3.1, while the &, represents the static behavior of
a fully filled tank, subjected to the unsteady pressure from ®;. In this case, ®, at the

tank walls satisfies
0P,

o= 0 (3.4)

as homogeneous boundary condition, and for the free surface condition satisfies

Equation3.1. This can be rewritten as

. 0Dy, .
by gt = (t) = —b1— g5t (3:5)

Assuming that the tank is a rigid body, with x, being its time-varying displacement,

the potential ®; can be written as
(Dl(r,e,z,t) = rogbl(hev Z) (36)

linking the fluid motion directly to tank motion, consistent with Equation 3.1.

Similarly, ®, can be expressed in terms of the ordinary sloshing mode ¢, ,, and the
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coefficients g, (¢):
(I)2<7na 97 Z, t) = E;.j:lgm (t)¢2,m(7ﬁa 67 Z) (37)

0% _

5 = 0 at the free surface for the type of

Substituting into Equation 3.1 and assuming

motion considered:

Here an oscillating dynamics becomes evident, indeed w,, is the natural frequency of

the m-th sloshing mode and A,, is a constant.

In order to compute the forces and torques on the tank walls, the pressure must be
integrated over the relevant area. Pressure appears in Equation 3.1 bounded to the

tank motion as

G014+ X GmBo.m (3.9)

showing that two contributions are necessary: a rigid-body motion term and a more
complex oscillatory term that a rigid-body analogy alone cannot represent. Therefore,
only when all g terms are directly proportional to 7, the rigid body analogy suffices. In
general, however, mechanical components such as spring-mass systems or pendulums
must be included, with parameters chosen to satisfy the governing equations. This
analysis is valid for rigid containers; elastic or deformable tanks would require
additional terms and modified boundary conditions, which are beyond the scope of

this thesis.

Several advantages can be gained from the use of
mechanical equivalents. Visualization is greatly simplified, allowing AOCS engineers
to work with equations and tune parameters without handling complex fluid dynamics
directly. The choice of the parameters and the relevance of the elements included must
be mentioned. Indeed, including all m eigenmodes, each with its oscillating mass m,,,,
would match the total fluid mass but may introduce unnecessary complexity relative to
the marginal improvement in accuracy. Careful selection of the most relevant modes

balances model fidelity with usability.

In general, the setup can be represented as in Figure 3.1.2, where the main parameters
are represented. The mass of the liquid is divided into a static mass m,, cantilevered
to the spacecraft, and sloshing masses m;, where i denotes the i-th sloshing mode. The
sum of all these components, the pendulums and the static mass, yields the total fluid

mass. However, in practical models used for real analyses, this balance is often not
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strictly maintained due to the relative significance of higher sloshing modes compared
to the first. In fact, the mass assigned to the first sloshing mode, m, is typically much
larger than that associated with the second eigenmode, m,. For control algorithms and
oscillation analysis concerning their impact on the spacecraft structure, it is generally
sufficient to consider only the first sloshing mode to achieve a realistic model. Only
in cases where resonance occurs at higher modes, their contribution becomes non-
negligible. In the context of spacecraft dynamics and typical maneuvers, this situation

almost never arises.

Figure 3.1.1: Relevance of second slosh modes compare to the first slosh mode. Credits
to Abramson, 1966.
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In Figure 3.1.1, the ratio of the sloshing mass assigned to the first mode to that assigned
to the second mode is shown, expressed as a fraction of the total fluid mass. At low
filling levels (or, in this case, low fluid height), the first sloshing mode accounts for an
increasingly larger fraction of the total mass. This indicates that the fluid’s behavior
becomes predominantly non-static. In contrast, the second mode, which has at least
an order of magnitude less mass than the first, remains almost constant with respect
to the fill ratio, as does its contribution to the overall dynamics. Higher-order sloshing
modes are associated with exponentially smaller masses, making their effect negligible

for the purposes of an AOCS model.

In this thesis, in agreement with several works [Dodge_ 1, 1, 15], the sloshing model
considers only the first mode. The mass assigned to this mode, m,, varies with the fill

ratio and the geometry of the tank, while the static mass is obtained by assigning to it
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all the smaller masses of the higher modes:

Moy = Mot — My (3.10)

The pendulum model has the additional advantage of naturally incorporating the
effect of gravity into its dynamics, so that it evolves intrinsically with the different
phases of the mission. The parameters that need to be determined are the length of
the pendulum rod L, the distance of the pendulum hinge from a reference point A,
(usually the center of the tank), and the displacement of the static mass from the same
reference point /. These parameters can be derived from experiments or simulations

with a few adjustments. Following the determination of the pendulum parameters, the

Figure 3.1.2: General mechanical equivalent

sloshing mass m, can be derived either from simulations or from experiments, where
the response of the fluid to known force inputs on the tank is analyzed. The sloshing
mass depends on both the quantity of fluid and the tank geometry. As shown in various
studies [1], when the tank is nearly full, e.g., for fill ratios above 95%, the fluid can
be satisfactorily represented by a static concentrated mass located horizontally at the
geometric center of the tank. As the fluid volume decreases, the relative importance of

the sloshing mass increases. However, in every set-up it is essential that the geometric
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center of the liquid remains unchanged in the equivalent model with respect to its
initial value. This is ensured by positioning the static mass below the center of mass
according to:

homo = (hy — Ly)my (3.11)

The lenght of the pendulum L, and its natural frequency w,, are related by

W = ol (3.12)
g

Thus, knowing the resonance frequency of the sloshing fluid, it is possible to
determine both L; and w,,. Instead, the position of the hinge point /; can be derived
experimentally by considering the maximum angular momentum and force on the tank
when the motion is initiated and then rapidly stopped. This procedure is based on
the definition of angular momentum with respect to the hinge point. An indicative
evolution of /, with the fill ratio is shown in Figure3.1.3. where the dependence on the

fill ratio is expressed using a more general tank geometry relation.

Figure 3.1.3: Hinge point evolution with fill ratio, expressed as ratio to the tank height.
Credits to Abramson, 1966.
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In general, deriving this parameter requires knowledge of the exact tank geometry,
the type of fluid, and any potential internal devices. For the study conducted in this
thesis, one of the objectives is to create a generalized model that can be applied to
different projects where the AOCS subsystem may operate. For this reason, some
analytical results are based on placeholders for the tank geometrical characteristics
(height, width, and length for rectangular shapes; diameter for cylindrical tanks; semi-
major and semi-minor axes for oblate shapes). These sets of parameters are based on
the assumption that the tank is clean, without internal hardware or baffles, and that

the liquid is inviscid.
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Hereinafter, the graphics and plots representing the evolution of the parameters are

presented. The numerical work of this thesis is based on parameters from a previous

OHB project, which included a CFD analysis of the sloshing.

In the following sections, parameters for different shapes are presented.

3.11

Rectangular Tank

Figure 3.1.4: Rectangular tank parameters
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For rectangular tanks the parameters can be derived following the presented function

taken from literature and that can be directly implemented in Simulink models, see

Table3.1.1.

Table 3.1.1: Spring-Mass Analogy Model Parameters

Parameter

Expression

h

lo

h
Y coth(3.682)
w

3.68
( W ) tanh 3.14h
m Q-7
T\3.87h w
mr —my
w tanh 1.57h
1.57 w
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Figure 3.1.5: Cylindrical tank parameters
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3.1.2 Cylindrical Tank

Also in this case, results are applied to the model from literature and can be inputted

directly as in Table3.1.2

Table 3.1.2: Pendulum Analogy Model Parameters for Cylindrical Tank

Parameter Expression

Ly 3;28 coth(3.68%)

my mr (ﬁ) tanh(3.68§)

mo mr —m

I %csch(?.%%)

lo Z—z [g—g—z} —(11+L1)%

3.1.3 Spheroidal Tank

The results derived for spherical and spheroidal tanks include derivation of the fluid
height and its relation with other parameters as it is not straight forward as in the
precedent cases. Derivations are done for general spheroids, for which a sphere is a

particular case.

For what regards spheroids, data are more sparse and functions describing parameters
have not been computed generally. However, trends describing the evolution of each
parameter are gathered from different literature sources (mainly [1] and [Dodge_ 1]).

The relevant plots are digitalised and fitted to shape appropriate functions. Many
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parameters had to be adapted to the analysis and handling of this model and the
relative describing function are presented below 3.1.43.1.5. It is important to notice,

that many studies have been conducted tracking fluid height instead of fill ratio (which

V(hfluid))
tank :

is the ratio of volumesfill, = This aspect does not impact the use of
results for rectangular and cylindrical tanks since the ratio of / 4/ hiank is the same
as V(h i)/ Vienk. However, when considering spheroids this relation does not hold
anymore, and it is needed to define the analytical relation between fluid height and
fill ratio. Indeed, many simulation environments uses fill ratio as input to the slosh
model, therefore it is valuable to make this model accessible. The defining function for
a general spheroid is:

+—==1 (3.13)

2
r(h) = 2* + ¢* :a\/l—g (3.14)

and the area is consequently A(h) = ma?(1 — i—z) The volume occupied when the fluid
height is » comes from the integration of the area A(h) over z for z € [—¢; —c + h], and

it results in:

3

Vi) = [z - 55" (315)
Vi) = e[ et h -t X (3.16)

Considering now the ratio V' (h)/V,u.x where Vi, = %wa%, by definition called fill

ratio:
fill, = 3n* — 21° (3.17)

To derive this relation the substitution » = h/2c¢ has been implied. Considering the
classic substitution for cubic function = (u + 1)/2, this relation can be analytically
solved to get the inverse relation. The final functions that from filling ratio gives fluid

height for a spheroid is:

hiank 1+ 2cos(%arccos(1—2- fill,) + %)

h’(flera h’tank:) = 9 : 9 (318)

This formula is of course valid for both oblate and prolate spheroids. Here are

presented the function describing the relevant parameters for both this shapes. The
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variable / here is made dimensionless as h = H/0.5h;,,, where H is actual fluid height

in the spheroidal tank.

3.1.4 Spherical Tank

Figure 3.1.6: Spherical tank parameters
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As particular case of what presented above, the spherical tank case can be described by

parameters in the following table.

Table 3.1.3: Pendulum Analogy Model Parameters for Spherical Tank

Parameter Expression
L R - (—0.6145h% — 0.3323% + 0.9828)
my prh*(R — h/3)-

-(0.01975 — 0.007715h + 8 - 107*h* — 1.43 - 107°)

my mr —my

- R - (—6.618 % 10°h + 1.004)

ho + hoank,/2 R- (8431073 - ¢~421Th | 1 065e~04217h)
w V R/g(1.319¢%18321 1 (0.00460-804m)

3.1.5 Oblate Tank

Hereinafter are presented the results for an oblate spheroid.
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Figure 3.1.7: Oblate tank parameters

Table 3.1.4: Pendulum Analogy Model Parameters for Oblate tank

Parameter Expression

w1 0.6817¢0-3863h

Ly Qefs/wi

my my(—0.100973 — 0.0234h% — 0.06943h + 09994)
mg mp —mg

hy hugn (—1.845h + 3)

heg g [(23_—22}2//};:::;22}

ho heg + ma/mo(hy + heg)

3.1.6 Prolate Tank

Hereinafter are presented the result for a prolate spheroid.

Figure 3.1.8: Prolate tank parameters

[Rattayya, 1965]

Finally, another useful aspect of substituting the fluid with a mechanical equivalent
is the possibility of easily including elements to represent damping, as well as its
evolution under different fluid conditions, depending on fluid volume, direction
of excitation, or varying external environment. This is typically implemented, for

example, with linear dashpots tuned as needed and added to the spring-mass or
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Table 3.1.5: Pendulum Analogy Model Parameters for Prolate tank

Parameter Expression

wi 1.343¢~ 009220 4 (0.004815¢> 06"

Ly efy/wi

mo mr —my

hy Beank . (—(.1272h% + 0.3624h% + 0.2852h — 0.6867)
tan 2—-2h hian 2

hcg %h 2 - [(3—2h//hm:k) }

ho hcg —+ ml/mo(hl + hcg)

pendulum elements.

3.2 Damping

Tracking the total energy of the system can be a useful tool for assessing the reliability
of a model. However, considering only the kinetic energy and gravitational potential
energy of the masses in an inertial frame is not entirely accurate when the reference
frame is initially attached to a fluid. The fluid nature implies complication on many
aspect of the dynamics and among this is also its particle interaction in fluid-fluid
and fluid-wall contact. With rare exceptions, fluids are viscous; they resist motion
and dissipate part of the system’s energy through viscous friction. This phenomenon

applies equally also to the liquids contained in propellant tanks.

When sloshing motion is excited, the oscillation amplitude undergoes a gradual decay
due to damping. For most common fluids, the damping ratio is relatively small,

typically on the order of 10~2.

Modeling damping in a real tank configuration is a highly complex problem, and
no complete analytical solutions have been reported in the relevant literature.
Nevertheless, several experimental studies have been conducted to determine damping
values for specific cases. These studies indicate that the damping ratio depends on
factors such as liquid height and tank geometry. In practice, it is often evaluated
either experimentally, once the other system parameters are known, or via numerical

simulation.
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A common experimental approach involves applying a known impulse to the system.
In this case, all parameters in the governing equations of motion are known except for

the damping ratio, which can then be identified from the measured response.

The effect of computing the decreasing of the oscillations’ amplitude is a way to
determining damping ratio. Indeed, the decrease in amplitude can be represented with

a logarithmic decrement as

51 Max amplitude oscillation (cycle n)

~ ""Max amplitude oscillation (cycle n+1) (3-19)

In linear systems, since the displacement is proportional to the restoring force and its
squared value is proportional to the total energy, the logarithmic decrement can also
be expressed in terms of force or energy decrement. From the logarithmic decrement,

the damping factor can be deducted from

§ =2y = 2w < (3.20)
Ce

Where c is the actual damping coefficient of the system with dimensions [N-s/m] for
linear damping, or [N-m-s/rad] for rotational damping. While ¢, is the critical damping
coefficient, which is the damping at which the system transitions from oscillatory to

non-oscillatory behavior.

Although the damping ratio is small, its contribution to the dynamics of the chosen
pendulum model remains significant and should be included. Given its generally
acknowledged magnitude, a linear approximation is typically sufficient. Consequently,
a damping term is introduced either as a linear dashpot or as a torsional component,
depending on the specific form of the model. This approach is valid under the same
assumptions for which fluid motion can be represented by the dynamics of a viscously

damped single-degree-of-freedom system.

Experimental and numerical studies on two oblate tanks—available from different

sources—show good agreement in their reported values of the damping ratio.

In the absence of simulation results tailored to the specific project under investigation,
it is therefore reasonable to adopt, as an initial estimate, the values extracted from such
studies when available. Therefore, in Table3.2.1 functions describing the evolution
of fill ratio for high-g cases in different tanks is presented. The results are fitted

functions combining experimental or analytical results from different sources with
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agreeing results[8][15][1][10] and adapting them to the framework used in this project.
Unfortunately, no data were covering the oblate tank case, that, however, can be

approximated with a cylinder with same proportions.

Table 3.2.1: Damping ratio ¢ for different shapes

Shapes Expression

Cylindrical (5.538(%)" — 8.948% + 4.199) (r=="")
Rectangular (#ﬁ) 0-5

Spherical (1.6(%)% - 0.922 + 0.45) )
Oblate (0.9516(£)° — 0.9011(£)* — 0.7354(2) +

+1.221(§;)" = 0.53274; + 0.08837) (r=5="")

Where the damping is function of fluid height (the derivation of the relation fill ratio-
fluid height is presented in the previous sections) and shape characteristic dimension:
radius R for cylindrical and spherical tanks, w width for rectangular tanks, b semi-

minor axis for oblate tanks.

The total damping of a fluid during excitation can also be increased through
modifications to the tank geometry. Examples include the insertion of metallic baffles,
elastic bladders, or other internal devices designed to dissipate energy and suppress

sloshing amplitudes.

In the present work, damping is considered solely as a result of fluid viscosity.
However, many experimental studies report data for configurations that also include
internal hardware within the tank. To account for such effects, the plots and trends
used in the damping analysis can be readily replaced with updated datasets reflecting
the increased damping ratio. These updated values can then be incorporated into the

analysis without requiring any changes to the underlying mechanical model.

The hardware employed for this purpose can vary in shape, thickness, and material,
and in some cases may achieve near-complete suppression of oscillations. These
devices can be either fixed or movable. A common example of fixed devices is baffles,
which are rigidly attached to the tank walls and may differ in geometry and placement
depth. Two frequently used configurations are annular and cruciform baffles. One
of the most influential design parameters is baffle thickness, which tends to increase

damping but also adds weight to the system. Examples of movable devices include

29



CHAPTER 3. METHODS

elastic diaphragms or expulsion bladders, in which the thickness of the material again
plays a key role, though generally with less weight penalty compared to metallic
components. Broadly speaking, the principle behind these devices is to either limit
the motion of the free surface or reduce the available free volume in the tank, while
preserving the overall geometry so that the global dynamics remain comparable.
Sloshing in sectored tanks presents additional complexity and is beyond the scope of

the present study.

Figure 3.2.1: Damping in oblate tank with cruciform baffles, Abramson,1966
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Figure 3.2.2: Damping in oblate tanks, Abramson,1966
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As an illustrative case in Figure3.2, a graph showing the effect of cruciform baffles in
an oblate tank is presented to facilitate comparison and to evaluate the effectiveness of

this type of device. While in Figure3.2.2, it can be seen the damping ratio for an oblate
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tank without internal hardware. In this example, the damping ratio increases to nearly
0.1 for a half-filled tank—this is particularly significant since viscous damping ratios
typically reach their minimum at this fill level. Under these conditions, the damping
has increased from approximately three times its original value to nearly an order of

magnitude higher.

3.3 Force Influence - Bond Number

The physical situation described in the preceding sections changes significantly when
a tank filled with fluid experiences an acceleration several orders of magnitude
lower than gy, the average gravitational acceleration at Earth’s surface. Under such
conditions, the behavior of the fluid no longer follows the dynamics described above,
as new forces become dominant. In particular, surface tension begins to outweigh both
gravitational and inertial forces. This effect manifests primarily at the free surface,

producing phenomena collectively referred to as capillarity.

The loss of dominance of body forces occurs when the net acceleration acting on
the system—whether gravitational or inertial—decreases gradually or abruptly. This
reduction does not require the acceleration to reach exactly zero; in fact, achieving
a perfect null acceleration would necessitate a spacecraft being located far from any
massive body exerting an appreciable gravitational influence, a scenario infeasible
for the configurations considered here. In practice, weightlessness is achieved when
the vector sum of gravitational acceleration and the body’s own acceleration is zero.
Under these conditions, the system is said to be in a state of free fall or apparent

weightlessness.

Experiments aimed at studying fluid behavior in such environments are typically
performed in drop towers or during parabolic flight campaigns. However, complete
weightlessness is not always the most informative test condition. Experimental setups
in microgravity—defined here as accelerations in the range of 1072 to 107% m/s2—often
yield more relevant insights for spacecraft applications, as they more closely replicate

the low but nonzero acceleration levels encountered in orbit.

It is important to note that, aside from isolated studies, experimental data under these
conditions remain limited. The complexity arises from the fact that fluid behavior

depends simultaneously on multiple parameters, including tank geometry, fill ratio,
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and relative acceleration. Consequently, it is not feasible to base a general analysis
solely on experimental observations. Nevertheless, by relying on capillarity theory and
the use of suitable dimensionless parameters, it is possible to predict fluid behavior for
a given set of conditions. These predictions can then be incorporated into the modeling
process, enabling the construction of a sufficiently representative model even in the

absence of extensive experimental data.

3.4 Dimensionless Parameters

As discussed in the previous section, the relative influence of gravitational, inertial, and
capillary forces can vary significantly during a typical spacecraft mission, depending
on the operating mode and acceleration environment. Each of these forces may
dominate at different phases, leading to markedly different fluid behaviors and

interface shapes.

To identify the prevailing physical effects in a given condition, dimensionless
parameters are often used. These parameters allow one to compare the relative
magnitude of different forces, thereby indicating which effects can be neglected and

which must be considered in the analysis of liquid propellant sloshing.
Two fundamental dimensionless numbers are:

e We = @, Weber number describes the relative importance of inertial and

capillary forces.

o« I'r = ‘;—;, Froud number describes the relative importance of inertial and gravity

forces.

In the framework of a space mission, Weber number is mostly influenced by thrusting,
so whenever the spacecraft it is not maneuvering, the environmental conditions (e.g.
gravitational force) determine which dominance range the system falls into. It is
important to notice how the scaling dominance of each force-type on the singular case,
depend on the dimension of the tank and the fluid parameter greatly. For instance a
smaller tank, given equal thrust, will have greater area for capillarity dominance than
a bigger tank. Because of this, the most extensively used parameter, in the analysis of

slosh, is the ratio of the two presented above: the Bond number.
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_ We pgL?

Bo= — — .
0 Fr o (3.21)

The Bond number represents the ratio between gravitational forces and surface tension
forces. For spacecraft attitude dynamics and control, these two effects are of primary
interest, as they typically alternate in dominance depending on the operational mode

of the system.

Figure 3.4.1: Division of forces predominance based on dimensionless parameters.
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The graph reported in Figure 3.4.1 illustrates how the state of the fluid can be
qualitatively classified according to the values of key dimensionless parameters. The
Bond number, in particular, has been examined experimentally in tanks of various
geometries and sizes. Its value provides insight into which forces dominate and,
consequently, which physical effects are most relevant to the analysis. A commonly
cited reference point is Bo = 1, at which the gravitational and capillary forces are
of comparable magnitude. Empirical studies have shown that gravity-dominated
behavior is generally observed for Bo > 10, while capillarity-dominated behavior
is observed for Bo < 0.1. Examples of gravity-dominated regimes include large-
amplitude oscillations with frequencies dependent on gravity level. In contrast,
capillarity-dominated regimes may exhibit phenomena such as liquid climbing along

the container walls and increased effective inertia.

In practice, the Bond number is primarily computed to assess how external conditions
influence fluid motion in a given setup. This assists in selecting appropriate sensors
and monitoring strategies for both simulations and physical experiments. However,
thresholds reported in the literature are not typically used as strict criteria for modular

dynamic modeling.
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In the present work, the Bond number is employed as a key indicator to classify
and analyze the different dynamic regimes that a spacecraft propellant tank may
encounter during its mission profile. This parameter provides a physical basis for
determining whether gravitational or capillary forces dominate the liquid behavior
and, consequently, for selecting the most appropriate modeling approach for each

case.

Based on this framework, three representative modes have been identified and
modeled separately, reflecting the range of conditions that may arise in actual

operational scenarios:

« High-acceleration mode: this regime corresponds to conditions in which Bo > 1,
and gravitational forces dominate over surface tension effects. It typically occurs
during thrusting or strong maneuvering phases. The sloshing dynamics are
modeled using the classical mechanical pendulum analogy described in previous
sections, which effectively captures large-amplitude oscillations driven primarily

by gravity.

a N

Figure 3.4.2: Fluid and mechanical representation of high-g behavior

» Low-acceleration mode: this regime corresponds to conditions in which Bo « 1,
and surface tension is the primary driver of fluid configuration and motion.
Such situations are common during long-duration coasting or orbital operations
with very low residual accelerations. Here, a capillarity-based model has been
developed to capture the characteristic redistribution of the liquid along tank

walls, the alteration of the free-surface shape, and the resulting variations in the
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fluid’s inertia properties. This model focuses on how these changes affect the

spacecraft’s mass distribution and attitude dynamics.
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Figure 3.4.3: Fluid and mechanical representation of low-g behaviour

« Transitional or unstable configurations: these modes occur when Bo is near
unity or when the system is perturbed from either a gravity- or capillarity-
dominated state. Under certain disturbances, the liquid mass may break into

distinct configurations that are however unstable.
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Figure 3.4.4: Fluid and mechanical representation of a drop transition configuration

Among transitional modes, particular attention is given to drop configurations, where
a portion—or, in low fill conditions, nearly the entirety—of the liquid detaches from
the main bulk and floats freely within the tank. This can lead to substantial and rapid
shifts in the spacecraft’s inertia and center of mass. In this state, the free-floating

liquid does not directly respond to tank accelerations or store angular momentum
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until recontact with the tank wall. Such configurations are generally transient, with
the fluid eventually rejoining the main bulk or adhering to a wall, in accordance with

the principle of minimum energy.

Instead, bubbles of air, where pockets of gas form within the fluid have not being
modelled as independent mode. This is done under the assumption that their dynamics
follows the same governing principles as the surrounding liquid, with the gas volume
treated as part of the free ullage. In capillarity-dominated regimes, bubble geometry
is represented implicitly by the curvature of the free surface. If a bubble migrates to
another region of the tank, the model adapts to the new configuration without requiring

additional equations.

By separating these regimes, the analysis can more accurately represent the physical
behavior of the propellant in varying operational conditions. The following sections
present the detailed modeling approach for each regime, along with their implications

for spacecraft attitude and control.

An initial definition of the proposed framework can be seen in Figure3.4.5. The
concept developed in this thesis is to provide a systematic method for predicting the
fluid behavior inside the tank under different operating conditions, using only the
information already available to the AOCS framework at any given time (e.g IMUs).
By identifying the prevailing fluid behavior, the appropriate dynamic model can be
selected for controller design or, alternatively, just to analyse the effects of maneuvers
and external disturbances on the spacecraft. The switching mechanism is based on
the Bond number, which determines the current mode of the fluid. Each mode is
associated with a distinct set of dynamics, derived from experimental observations and
supported by analytical fluid dynamics considerations. In theory, the combination
of influencing parameters, such as geometry, acceleration level, fill ratio, and fluid
properties, could lead to an infinite variety of configurations. In this work, the problem

is reduced to a minimum of three representative dynamic modes:

Pendulum mode (Mode 1) and capillarity mode (Mode 2) represent two stable
configurations of the fluid inside the tank. The fluid settles into one of these two modes
depending on the level of acceleration, the tank geometry, and the surface tension o
of the fluid. While surface tension values remain relatively similar across the common
propellants in use, the dependence on gravity level and geometry means that two tanks

with identical shape and fill ratio but different sizes could be in opposite modes under
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the same gravity level.

In transitional states - such as when an abrupt change in effective acceleration occurs,
for example when switching from an idle state to a maneuvering (thrusting) state — a
third configuration, referred to as drop mode (Mode 3), is considered. In this mode, a
portion of the liquid may detach from the main mass and float freely within the tank.
The drop shape follows the minimum-energy principle, forming a sphere to minimize
surface area while floating, and then further reducing surface area upon attachment
to a wall. From this transient state, the fluid eventually converges to either Mode 1 or
Mode 2. Drop mode can also arise from perturbations in Mode 2, particularly under
very low gravity levels, where small disturbances can cause portions of the liquid to

detach and behave independently before rejoining the main mass.

Figure 3.4.5: Bond number-based switch condition

MODE 1: Pendulum

* Acceleration impulse
* Decrease in effective
acceleration

MODE 3: Drop

MODE 2: Capillarity

The equations of motion for the three modes are implemented in Simulink, with each
mode encapsulated in its own subsystem containing the parameters required for its
specific dynamics. The Bond number is computed in a higher-level block and serves as

the switching condition to activate the appropriate mode.

This architecture allows the simulation to be directly integrated into AOCS analysis.

The model receives as inputs:

measured acceleration in the body frame;

geometry of the tank;

fluid properties;

fill ratio.

From these inputs, it produces outputs reflecting the actual dynamics the fluid

would experience under those exact conditions. This enables results grounded in
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experimental and analytical knowledge without requiring real-time CFD or other
computationally expensive fluid dynamics solvers, thus offering a computationally

efficient yet comprehensive tool.

Furthermore, because the model accounts for the distinctive behaviors of each mode, it
can provide more accurate estimates of static and dynamic inertia, as well as center-of-
mass position—parameters that can vary significantly between modes and are difficult

to capture with a single, unified model.

It is acknowledged that real fluid behavior is influenced by additional factors, such
as tank wall cleanliness, fluid purity, and other subtle physical effects, making it
unrealistic to define perfectly distinct modes in all cases. For this reason, the
current implementation uses mutually exclusive switching conditions as an initial
simplification. In later stages, the framework will incorporate smoother transitions,
allowing multiple modes to be partially active in parallel. This progressive refinement
is compatible with the Simulink implementation and will be detailed in the next

chapter.

3.5 Capillarity Mode

After the pendulum configuration has been presented in the previous sections, with
its analytical and experimental base, here Mode 2 is presented. In capillarity mode,
corresponding to low Bond numbers, the general dynamics derived in the previous
section still applies to some extent. The characteristic velocity remains Lw,,. However,
in conditions where surface tension forces dominate, the Froude number Fr is no
longer the governing parameter; instead, the Weber number We becomes the key
dimensionless parameter, as it captures the relative influence of inertial and capillary

forces.

Before detailing the capillarity-dominated model, several important parameters and

concepts must be introduced.

Surface tension arises at the interface between a liquid and a gas. The two phases
maintain a pressure difference AP that must be balanced by surface tension for the

interface to remain in equilibrium. According to the Laplace law, for a spherical bubble
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of radius R, this balance is expressed as:

200 4o
P-h=5=7 (3.22)

For a general curved interface with principal radii of curvature r; and r,, the pressure

difference is given by:
1 1
P —P= a(— + —) (3.23)

1 )
Surface tension values o are usually specified for a liquid in contact with air, but they
have been shown to apply with good accuracy when in contact with other gases. In this
work, it is assumed that the values for air provide sufficiently precise results for the

intended analysis.

Another critical parameter is the contact angle 6., defined as the angle between the
tangent to the liquid-gas interface and the solid surface. This angle distinguishes
wetting fluids from non-wetting fluids: wetting fluids have 6. < 90°, while non-wetting
fluids have 6., > 90°, as illustrated by mercury on a solid surface. During motion,
the contact angle may vary due to hysteresis, with different values for advancing
(expanding onto an untouched surface) and receding (retracting on an already wetted
surface) conditions. The contact angle is important because it affects the computation
of surface tension forces, the associated energy, and consequently the shape of the
liquid interface. For practical purposes in this model, it is considered sufficient to

assume A = 0°, a common assumption that is valid for most propellants used.

3.5.1 Dynamics and Oscillation Properties

In capillarity-dominated conditions, the natural frequency of the fluid oscillations

transitions from a gravity-based definition:
wn(L/g) = A (3.24)
to a capillarity-based definition:
tobe w?(pL?/o) = B (3.25)

where A and B are parameters that depend on the fill ratio and tank geometry.

It is important to note that the expression for natural frequency in low-gravity

39



CHAPTER 3. METHODS

conditions is independent of the actual value of ¢g. This implies that the oscillation
frequency does not vanish simply because gravity is not dominant. Indeed, some
simplifications may treat the fluid in microgravity as nearly solid, due to the effect
of capillarity resisting motion. However, this can be misleading: experimental
observations indicate that when the effective acceleration abruptly decreases, the
fluid oscillates slowly with frequencies ranging approximately from 0.001 Hz to 0.1
Hz, depending on tank geometry and fill ratio. These low-frequency oscillations can
coincide with resonant frequencies of spacecraft structural components, potentially

leading to physical damage or interference with control systems.

The sloshing behavior at high Bond numbers has similar characteristics to the low Bond
number dynamics, but present an additional term to represent the new influence of
capillarity. This can be a torsional spring connected to a pendulum hinge or linear
dashpots. Indeed, at low-Bo conditions, the frequency is modified by surface tension

effects:
w

Y AT o) (3:20)

and results to be strongly bounded to fluid properties as density and surface tension

and not to acceleration.

Figure 3.5.1: Dimensionless slosh frequency, first and second mode, with liquid depth
h > 2R,, Dodge, 1968
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For Bo < 1, the natural frequency becomes practically independent of the Bond

number.
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The governing equations for low-gravity fluid sloshing follow a similar pattern as for
high-¢ sloshing, but now include constraints to preserve the equilibrium contact angle,
which is no longer negligible. The complete derivation is beyond the scope of this
thesis, but can be found in [7]. These equations can be solved analytically using
dimensionless parameters representing tank geometry, oscillation frequency, and
wave amplitude. Solutions are obtained by computing eigenvalues and eigenvectors

that satisfy the governing equation for a low-g sloshing tank.

In general, the solution has the same formal structure as the pendulum
equivalent:

o
W?z = Qi {%0 + p_R%} (3.27)

However, this result highlights the additional surface tension term, which acts as
a stiffening element in low-¢g conditions. Mechanically, this is what an additional
torsional spring at the pendulum hinge or a linear dashpot would represent. Compared
to the torsional spring in a pendulum setup, linear dashpots allow the design of new
configuration in Mode 2 that aims to represent the behavior more accurately for
AOCS purposes. Therefore a different mechanical equivalent has been modeled to be
included in the dynamics of the spacecraft and represent not only the right sloshing

modes but also other parameters like inertia and mass distribution.

Some parameters need to be discussed regardless the model chosen. In

particular,

« Oscillating mass: Analytical results for cylindrical tanks show that sloshing
mass decreases as Bo decreases, with approximately 10% lower mass at Bo = 10
compared to Bo = oo [1, 7]. The same trend of sloshing mass can be considered
for the case of rectangular tanks, because the underlying analytics refers to the
same evolution. In this way, a coherent input data is ensured for the model.
Moreover, prediction with similar analytical base are available for spheroidal
tanks and the result can be sufficiently representative for spheroidals as well.
Figures 3.5.2 and 3.5.3 illustrate the sloshing mass evolution as a function of fill

ratio and Bond number.

From the evolution shown, it can be seen that even though at Bo = 10 the value
of sloshing mass decreases slightly from values of high sloshing, the evolution

is smooth and continuous to values in the uncertain range of 1-10 Bo and and
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Figure 3.5.2: Evolution of sloshing mass to total mass ratio with Bo and fill ratio as
varying parameters
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Figure 3.5.3: Evolution of sloshing mass to total mass ratio with Bo and fill ratio as
varying parameters

Slosh Mass Ratio vs Fill Level and Bond Number in Spheroids

liq
e ot
[=>] ©

o
~

e
[N}

Slosh Mass Ratio m, I'm,

o

=)

s 60 0.2
40
Bond Number 0 20 Fill Level (%)

below, in the region of capillarity dominance. This is important and valuable for
a switching condition that makes more than one mode being dynamically solved

at the time.

« Low-g slosh modes: Oscillation frequencies decrease significantly compared
to high-g sloshing. From experimental and
simulation results, it appears that the frequency has markedly different values
for spheroids and cylindrical /rectangular shapes. Spheroidal tanks tend to have
slightly higher frequencies for equivalent fill ratios than cylindrical or rectangular
tanks. In the capillarity-dominated model, only the first mode is considered
due to limited experimental data. As general pattern w, decrease as fill ratio
decreases. Although the dependence on the Bond number is embedded in the

computation of w as surface tension substitutes the dominance of the restoring
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force in gravity. As can be deduced from Equation 3.22, a larger tank has a lower

frequency, and for higher surface tension, the frequency will increase.

« Damping: sources of data for damping in low-g conditions cover only partially
the different geometries, fill ratio, and Bond number. Some experiments
conducted on cylindrical tanks show that for low Bo, damping ¢ scales with the

inverse of Reynolds number, Re, and to the fluid viscosity v[7]:

14
¢ =4.47, /—W1R2 (3.28)
0

This observation provides useful insight, although it is not yet proven to be
generalizable to all tank shapes. Nevertheless, it serves as a valuable reference for
comparing magnitudes and trends. To characterize Mode 2 damping, data from
experiments on various tank geometries have been analyzed and fitted against
observations from different low-gravity setups. Additional trends for damping

can also be inferred from settling time measurements and force response curves.

In general, damping tends to increase under low-gravity conditions, partly due
to larger wetted areas and enhanced viscous effects. However, these factors
alone do not fully explain the observed increase. Despite the higher damping
values, the system remains underdamped, with oscillations decaying gradually

over time.

Here after are presented the numerical findings from literature results combination.
The first low-g slosh mode is presented for spherical and oblate tanks as function of
both fill ratio fill, and Bond number Bo. The range that is relevant to observe for this
model is 1-10 Bo and Bo < 1. Itis in general more common to find data for the former.
However, for a first version of the model, the values found are good representations
of the physical behavior, shaping satisfying results for the shapes considered in the
model. Particularly, w; is presented for cylindrical, spherical and oblate shapes, and
for rectangular tanks the accuracy is good using a cylindrical equivalent sized model.
Slosh mass for the spherical tanks is shaped on experimental trends and can be used
for spheroids as well, since experiments conducted on oblate spheroids agree well with
the spherical tanks findings. The cylindrical and rectangular cases are based on the
assumption that the trend of slosh mass as function of fill ratio is the same but scaled in
high-g and low-g, with the magnitude decreasing with Bond number. This assumption

is verified in some experimental results, noticing the slosh mass at Bo = 10 is 10%
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lower that at high Bo. [7][8]This linear trend is taken for low-g modeling, to shape
a slowly decreasing function which maintains the same shape as in high-g. Damping
for cylinders is represented by two functions for the range respectively of Bo > 5 and
Bo < 1, noticing the logarithmic trend for damping as function of a decreasing Bond
number, the two functions are interpolated to have continuity also in the mid-range.
[7] Damping for sphere and spheroids is derived from experimental results and shaped

as function of fill ratio.
Low-g slosh mode wy:

* Cylindrical: 0.2001e™ "9/ 4 1.484¢012%/7 wy = 1.61[-%(1 + 0.798 B0)]** and when

h<3R w; = 1.61[:% (1 + 0.798B0)|°% - (tanh(1.841h/R))

« Spherical:ay(Bo) + a1(Bo) - f, + az(Bo) f? where

ap = —0.005322 4+ 0.0678x + 0.1148
a; = 8.7-107*2% + 0.0175x + 0.0607
as = —0.0164z2 + 0.23092 + 0.3050

» Oblate:ay(Bo) + ay(Bo) - f, + as(Bo) f? where

ap = 0.00652% — 0.119z + 0.2009
a; = —0.015622 + 0.2093x + 0.3546
as = —0.006922% + 0.13312 — 0.1306

Low-g sloshing mass m:

« Cylindrical: 27tanh(252) (0.9 + 0.12%:1%) and when implemented, the scaling

factor can be clipped in [0.5, 1].
« Spherical:0.0781 + 0.0025f,. + 0.1434Bo — 0.0008 f, - Bo — 0.0059 Bo?
« Oblate: 0.0781 + 0.0025f,. + 0.1434Bo — 0.0008 f,. - Bo — 0.0059 Bo?
Low-g damping ratio (:
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+ Cylindrical*:

1%
0<Bo<1: =447,/
COI w1R2

1<Bo<5:(1 +w) - (o1 + w(s

8.20 v
Bo>5:(; = 0.097(1 + 300-6)’/w132

(log10(Bo) — log1o(B)) _ log1o(Bo)
(log10(5) — log1p(1)) 0.6990

where w =

« Spherical:ay - f* + ay - f, + ap where

Ao = —0.0??(lOgmBO) 4+ 0.977
a; = 0.0556(logi1pBo) — 0.1353
ag = —00312(10g1080> + 0.0717

+ Oblate:ay - f> + ay - f, + ap where

Ao = —0077(l0910B0) 4+ 0.977
a; = 0.0556(log1pBo) — 0.1353
ap = —0.0312(log1oBo) + 0.0717

* The trend of Bo is fitted as piece-wise function to comply with literature results.

3.5.2 Shape and Geometrical Configuration

A key characteristic of the capillarity-dominated regime is the shape that the fluid
adopts. In this regime, the force that normally keeps the fluid surface horizontal
becomes negligible, allowing capillary effects to dominate. As a result, the liquid tends

to cling to the walls and rise along the tank borders relative to the central region.

The configuration of the fluid surface is governed by thermodynamic principles and
energy minimization. While a detailed derivation is available in several sources [8], an

intuitive explanation is presented here to illustrate how the fluid surface evolves.

Consider a cylindrical section connected at its diameter to a cone on each side. If the
two conical borders are pulled apart, work is applied to the section. The work, AW,

is equal to the surface tension multiplied by the change in wetted area after the fluid
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configuration is perturbed. When the contact angle 6. is constant, the wetted area can

be expressed as:

Acapillarity = Ainterface — COS ecAwet (329)

Considering the energy balance on the system, assumed isothermal:
AU = AQ + AW (3.30)

where U is the internal energy and AQ is the heat transfer. For an isothermal and
reversible process, we also have:
AQ =TAS (3.31)

where S is the entropy and 7' is absolute temperature. If the tank reaches the
equilibrium configuration only due to external conditions, e.g. microgravity, no work is
performed. Therefore the expression in Equation3.5.2 becomes AU = A(Q Regarding
the contribution of entropy change, for the second law of thermodynamics it holds

AQ < TAS which, combined with the previous expressions, yields:
TAS =AU — O'AAcapillarity = 0> _UAAcapillarity (332)

and because o can only have positive values, it follows that AA iy, < 0. This
shows that when capillarity dominates, the fluid adopts a configuration that minimizes
the capillary area, i.e., the interface surface. For a given liquid volume and 6. = 0,
a hemispherical configuration achieves the lowest capillary area compared to a flat

surface.

In a hemispherical configuration, the interface radius of curvature matches half the
tank width or radius. The fluid height at the lowest point is approximately one-third
lower than the level of a flat interface. Basic geometric considerations, such as the
center of mass of triangles, explain this height distribution for an incompressible
fluid. While the hemispherical interface has a slightly larger surface area than the
flat alternative, the increase in wetted area dominates, resulting in a more negative

A Acapiltarity according to Equation 3.29.

This new configuration does not directly alter the oscillatory behavior of the fluid,
but for mid-filled tanks it significantly changes the mass distribution. It is therefore

important to track the resulting changes in inertia in the AOCS database. Typically,
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experiments and simulations focus only on impact forces on tank walls and do not
account for the geometric variation of the interface. However, scientific studies of fluid
behavior in microgravity provide photographic and analytical data that can inform
the mechanical equivalent model, particularly for Mode 2 in capillarity-dominated

conditions.

The same principle applies to free-floating drops and Mode 3. Fluid drops tend to
merge to reduce their interface area, ultimately forming a single sphere. For any
contact angle 4., a free-floating drop has a larger capillary area than one attached to the
tank walls. Therefore, the stable configuration of a drop corresponds to attachment to

the walls, consistent with the geometries seen in Modes 1 and 2.

3.5.3 Mode 2 Physical Model Description

Information required to develop a physical model that represents all relevant features
and data for analysis within an AOCS simulator is generally not easy to obtain. Most
experiments and simulations have different objectives, so data are often fragmented.
However, by collecting results from multiple sources and cross-checking them, some

trends have been identified and used to construct a new, representative model.

This mechanical equivalent is intended to capture the most significant aspects of fluid
motion in capillarity-dominated tanks. These include the oscillation frequency, the
forces generated by fluid movement, and the mass distribution, which determines the

system’s inertia. The reference model is illustrated in Figure 3.5.4.

The sloshing mass is divided into three main blocks: the largest portion is assigned to
the central mass, m3, while two equal lateral masses, m; and m,, complete the total

sloshing mass.

The central mass rests on a raised platform to match the total center of gravity of the
fluid not involved in surface curvature. The platform can move vertically, compressing
a spring k3., mimicking the extension of the meniscus under longitudinal accelerations
orrotations. The central mass can also move horizontally along a skid, constraining the
positions of m, and m,, which are linked to ms via a rigid rod. The lateral masses have
fixed horizontal positions, while their vertical motion is guided along slides following

the tank walls.

This design replicates the rise of fluid along the tank walls, producing a hemispherical
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Figure 3.5.4: Mode 2 physical model
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surface in cylindrical and rectangular tanks, or a hemi-elliptic surface in spheroidal
tanks. For half-full or less-full tanks, the portion of fluid rising due to capillarity can

be significant, sometimes exceeding 40% of the remaining volume.

These hemispheres or hemi-ellipses can be approximated in cross-section as triangles
relative to the horizontal height of the lowest point of the interface. Following the
geometric center of these triangles, the positions of m; and m, are determined both
horizontally—at one-third of the triangle base from the wall—and vertically, at one-
third above the peak of curvature. The central mass, ms, is placed midway to the lowest

point of the curvature to represent the remaining distribution.

The central mass has two degrees of freedom and interacts with the lateral springs
k; and a linear dashpot as a damping element. These parameters drive the
oscillatory motion of the central mass while the lateral masses compensate for volume
conservation, maintaining the meniscus shape. Under a perturbation, for example, if
the fluid is pushed toward one side, the fluid in low-gravity conditions will slowly cling
to that wall, while the opposite side follows the motion more gradually, decreasing in
height but preserving the curved interface pattern. Experimental observations, such

as those shown in Figure 3.5.5, can aid in visualizing this behavior.
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Figure 3.5.5: Experimental observation in low gravity. The surface maintains a curved
interface on both walls edges even when the horizontal position of the center of mass
is moved

Values for the spring constants and damping coefficients are derived from simulations,

considering oscillation frequency, decay time, and damping ratio.

The relative quantity of fluid contributing to lateral distribution depends on the fill
ratio, so model parameters are updated accordingly. In tanks with variable cross-
section, such as oblate shapes, the surface dimensions change with fill ratio, requiring

updates to both the horizontal and vertical equilibrium positions of the masses.

At high fill ratios, the gas bubble above the fluid is well represented by the curvature
of the interface and the remaining tank volume, particularly in curved tanks. The
fluid’s position in the tank is determined by the most recent acceleration or pseudo-
acceleration experienced. For an impulsive step down to microgravity, the fluid
initially responds as if accelerated in the opposite direction. The system then
reconfigures in Mode 2 according to the effective acceleration, with the final position
from Mode 1 used as the initial condition. In realistic scenarios, the tank is rarely at

rest before entering microgravity, so this initial configuration is typically known.

For simulations starting directly in microgravity, the model can begin in a
chosen configuration relative to the body frame. If in-tank sensor data are
available, these measurements can be incorporated as initial conditions for the fluid

configuration.

3.6 Drop Mode

The third configuration considered in this work is the drop mode. In this mode, part
of the fluid under certain perturbations detaches from the main mass and, through
coalescence of smaller drops, forms a single drop or blob. This behavior occurs when

surface tension acts on the fluid and competes with other forces. As discussed in
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the surface energy considerations, the configuration of a floating drop is inherently
unstable. It represents a transient fluid distribution that will eventually rejoin the main

fluid mass or move toward the tank walls if no other fluid is present.

Understanding this dynamics is useful for analyzing transient moments between
maneuvers or during transitions in mission phases. In such situations, relying
only on stable configurations may fail to capture the complexity of the actual fluid

behavior.

Drop mode is typically activated during transitions between accelerated (high-g)
conditions and capillarity-dominated (low-g) conditions, and vice versa. It is also
relevant at low fill ratios: when the fluid is in Mode 2 and experiences an impulsive
acceleration insufficient to trigger a complete transition to Mode 1, experiments show
that the fluid can fully detach from the wall and move as a drop until it reaches the wall

again.

Early studies by Rayleigh demonstrated that oscillations of a drop under perturbation
distort its surface from equilibrium. The restoring forces in this case arise solely from
surface tension. When viscosity is included, small oscillations experience damping,
but because the drop does not impact the wall, effective damping is much lower than

in capillarity-dominated or high-g sloshing.

For a drop that does not come intooes not come into cont, thect with the tank, the
rotation of the tank does not directly influence its motion; therefore, the drop does
not store angular momentum that could affect the spacecraft. The drop itself may
rotate, but this rotational motion has minimal relevance to the overall analysis and
is not considered. Instead, it is sufficient to model the translational movement of
the drop, which is sustained by springs representing the dynamical properties of this

configuration.

More in detail, The oscillatory behavior of drops has been studied for centuries, starting
with Rayleigh and more recently using optical observations of various liquids. The
eigen-frequency of a non-viscous, force-free drop, which assumes a spherical shape in
equilibrium, is given by:

4m o

wi =11 - 1)(l+2)7ﬁ (3.33)

Here, w; is the eigen-frequency, o is the surface tension, ) is the drop mass, and [ is

an integer representing the mode of oscillation. The lowest frequency, known as the
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Rayleigh frequency, corresponds to [ = 2:

A7 o

2 P —_———
w =38 oY, (3.34)

This expression can also be represented in terms of density and radius, as the
equilibrium configuration inherently links these parameters. In practical terms, it is
often convenient to consider the percentage of the total fluid mass assigned to drop
mode and derive the corresponding volume. However, experimental data on drop
mass are scarce and vary with fill ratio. Despite these uncertainties, the drop-mode

setup remains valuable in the overall model and is easily tunable.

More recent studies [11] have incorporated the viscous contribution to the theory,

defining a damping constant as:

20m R

where v is the kinematic viscosity. This damping is small relatively to the oscillation
frequency, which can therefore be considered effectively unchanged. These results are
valid for free-force environments such as microgravity and are assumed to apply during
transitional conditions, effectively slowing down the drop motion without altering its

primary oscillatory behavior.

3.6.1 Mode 3 Physical Model Description

The portion of fluid that detaches from the main mass due to residual velocity, inertia,
or interface deformation depends on the tank’s condition. The predominant parameter
affecting the amount of mass in the drop is the fill ratio. Consequently, the size of the
drop increases as the fluid height decreases. Experimental observations indicate that
for fill ratios below approximately 0.20 and very low Bond numbers, stable equilibrium
configurations can consist of entirely free-floating blobs or drops partially attached to
the walls [NASA_ Cold-sat][21]

In general, for fill ratios around 0.1 — 0.15 or lower, during transitions or disturbances
in microgravity, nearly 90—100% of the fluid can be considered to collect into a single
drop. This behavior contrasts sharply with high fill ratio conditions, where any formed
drops are small and quickly merge back into the main fluid mass, becoming almost

negligible. An empirical formula for assigning mass to the drop, based on experimental
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observations, is:
Mdrov _ .7(1 — C)V/? (3.36)

Mot
The remaining fluid mass is treated as a solid "brick” centered at the remaining liquid

center of mass, which does not participate in the drop dynamics.

The drop is modeled as a spherical mass. Its relative volume and surface area are
computed using standard geometric relationships. The case where the sphere diameter
exceeds the tank dimensions is generally ignored, as high fill ratios produce small
drops constrained within a small volume, while at mid and low fill levels the drop
remains free to move. Nevertheless, for numerical stability and physical consistency,
it is recommended to impose a maximum drop radius based on the fill ratio and tank
geometry. If computations yield a radius exceeding this limit, the maximum allowable

radius is enforced.

The drop is modeled as a rigid sphere floating freely within the tank. Physically,
the drop is deformable, maintaining constant volume. Surface tension acts like an
elastic membrane, resisting surface area increases. When the drop is perturbed,
its deformation stretches the sphere, which then responds by restoring its shape.
This behavior is modeled using springs that push and pull the sphere back toward

equilibrium, as illustrated in Figure 3.6.1.

The drop is modelled as a rigid sphere floating in the middle of the tank, with no
forces applied to it and so in equilibrium. The drop it self wound not be a rigid
body, but a deformable mebrane that keeps a constant volume. The deformation,
coming from surface tension, can be considered having elastic properties. This is
because surface tension acts agaist any surface increasing action. In practice this
results in a higher inertia while part of the mass is brought to follow the direction of
the perturbation. Since the volume needs to stay constant, the deformation stretches
the sphere, which it self responds to the impulse pulling back in shape the fluid. This
mechanism is modelled with springs that pull and push back the solid sphere as shown

in Figure3.6.1.

The potential energy of the drop is proportional to its surface area:

V=0-A (3.37)

where o is the surface tension. The condition of minimum potential corresponds to the
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Figure 3.6.1: Mode 3 physical model

condition of minimum area - the sphere. This means that for small deformations

Viurface = 0 - (Ag +0) = g Ag + %Ao + %k:eff(deformation2) (3.38)

The reaction of the fluid to the new shape can be represented with an equivalent
spring constant distributed along the surface, multiplied by the deformation from
the spherical surface. While an ideal model would use an infinite number of springs
radially distributed, a simplified approach divides the equivalent spring constant k.,
n = 4—6 springs- for either a planar or three-dimensional representation. This allows
the solid sphere to distribute the response to the deformation on different directions

within the axis of the coordinate system.

The spring constants are derived from the oscillation frequency due to surface tension

(3.6) and the relation k = w?m: k = w?m:

B 3270

ki )
3-n

i=1,...,n (3-39)

where, in general the value of n can be increased with no limits if the dynamics of the
system is updated. The springs are attached to the tank walls, bottom and top. Firstly it
has been considered to make the spring statically attached to the mid-point of the tank
wall, bottom or top, to restore from all directions the drop at the center. However, also

an alternative approach has been presented since the former could not result physically
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accurate. Particularly, there is lack of clear evidence that the deformation of the sphere
is opposed by the fluid also for displacement of mass from the initial point and not only
for the shape. Therefore, the elastic potential has been kept only to restore the sphere
shape but not to push back to the center the sphere. This is translated in physical
properties having all springs on skids. In this way springs would follow the movement
of the sphere and then restore it on each axis. The restoring force in this way acts in the
direction of the deformation only, slowing down the motion as expected.With sliding
springs there is no representation of the perpendicular contraction as response to the
stretching in one direction for the conservation of volume. This aspect is assumed not
to be influencing the center of mass position considerably. The ease of computation is

of higher advantage, bringing the sphere to be slightly deformable.

3.6.2 Transition Implementation

The drop mode represents an inherently unstable fluid configuration. When modeling
this behavior within a switching-mode system, the transition from drop to the main
fluid mass can be handled in different ways. One approach is to track the drop’s
position: as it approaches the tank walls or the remaining fluid interface, its velocity
can be set to zero and its mass reassigned to the main body of fluid. While this method
reflects the underlying physics, it introduces sudden changes in inertia and mass,

which can complicate the numerical implementation.

An alternative and smoother approach is to model the transition as a gradual change
in mass over time. In this case, the drop’s mass decreases continuously according to
a transition time that depends on the fill ratio. This method avoids abrupt changes in
dynamics and better captures the physical process of the drop merging back into the

main fluid. Mathematically, the evolution of the drop mass can be expressed as:

t
mdrop(t) - (]- - —> mdrop,i (340)

ttransz'tion

This representation ensures that both the motion and the mass of the drop evolve
smoothly, preserving numerical stability and maintaining a realistic depiction of the

fluid’s behavior during the transition.

The transition time can be computed based on some experimental results from [8] and
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others as
Lok D
o

where K can vary in the range of 0.15-0.16 based on different tank shapes, K=0.15
is implemented in the model. For when the velocity of the drop is particularly
low, a upper-bound to the duration of the transition could be included. This could
be evaluated via CFD results, analysing the overall maximum duration of unstable
configurations under low perturbations. Alternatively, to deal with the merging of
the drop mass to stable configuration mass, the additional geometric constraint,
represented with a smoothed function, can be included in parallel to the time

constraint.
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Modes Dynamics and

Implementation

To track the evolution of the propellant response inside the tank, it is computationally
efficient to define the governing equations of motion and solve them numerically. This
approach avoids the need for sensors or cameras inside the tank, although fine-tuning

could still benefit from such measurements.

The equations of motion describe how the fluid responds to specific inputs, such
as perturbations acting on the tank, gravitational effects at different altitudes, or
maneuvering forces from the spacecraft. Since external conditions vary throughout the
mission phases, the model representing the fluid’s behavior must adapt accordingly.
Each of the designed modes is described by its own set of equations of motion, still
they all present the same output to ensure the functioning of the following subsystems

regardless of the mode that the fluid is in.

Indeed, the Simulink implementation of this model is intended as a component within
a larger AOCS simulation environment. In this setup, the sloshing model for a
given tank receives inputs from other spacecraft components and simulation modules,
including control hardware outputs (forces and angular momentum) as well as external

perturbations acting on the spacecratft.

It is also important to note that propellant sloshing is often not the only oscillatory
phenomenon coupled to the spacecraft’s main structure. Spacecraft may also include
features such as double tanks, deployable booms, or large flexible solar arrays. These

appendages influence the spacecraft’s motion and are themselves affected by it. The
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resulting dynamics are coupled between the spacecraft’s rotational and translational
degrees of freedom and those of the sloshing model (or, similarly, the equivalent

models for flexible appendages).

This chapter derives and presents the equations of motion for all three modes of
the sloshing model. Firstly considering the two-dimensional case for the ease of
the analysis, and then extending to the three-dimensional case - also required for
integration into the AOCS simulation. The analysis focuses on representing the tank as
an accelerating and rotating frame of known motion, with the fluid’s force and torque
as outputs and the tank’s acceleration and rotation as inputs. Following this structure,
the fluid motion is influenced by the motion of the tank but no feedback coupling on the
spacecraft dynamics is presented. This framework is considered at least initially due
to the alignment with many experimental setups, where tanks are mounted on shakers
or gimballed tables with controlled dynamics, and the measurable output is the force

on the tank walls.

Finally, the chapter includes the derivation of supporting parameters from available
data or known tank characteristics, ensuring that the model can be applied to a variety

of spacecraft configurations.

4.1 Equations Mode 1

For sloshing in high-¢ conditions, the representative model for fluid motion is the
pendulum. When subjected to high-magnitude acceleration, the fluid tends to
oscillate in the direction of the perturbation with considerably high amplitude. The
frequency of oscillation is related to the gravity level and the length of the modeled
pendulum, as discussed in Chapter 3. In the literature, the coupling between pendulum
motion and spacecraft pitching, as well as the effects of distributed acceleration along
different axes, is often neglected. Most common experiments consider high-magnitude
acceleration along the z-axis—the longitudinal direction of the tank—with values in the
range of 1 — 10, go. In these cases, the equilibrium position of the pendulum aligns with
the longitudinal axis of the tank. However, in typical launch or thrusting conditions,
the resulting acceleration may not align with any of the body axes, instead forming an

angular offset v, from the vertical.

In the following derivations, based on Landau’s theory for a non-inertial frame,
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Figure 4.1.1: Mode 1 physical model

Mo

the pendulum is always aligned with the effective acceleration, which includes both
thruster and gravitational contributions. Consequently, the bottom of the tank—
perpendicular to the equilibrium direction of the pendulum—varies depending on the
relative magnitude of the accelerations along the different axes. This holds for any tank

shape that is not spherical.

Considering a new equilibrium offset for each possible combination of acceleration
components implies that an infinite number of tank orientations would theoretically be
needed. Since only part of the fluid is assigned to the pendulum mass, it is important
to account for the pendulum rod’s equilibrium direction. The remaining fluid mass
settles at the bottom of the tank, forming a surface interface perpendicular to the
equilibrium direction. Thus, for different orientations, both the bottom configuration
and the static fluid shape change, leading to variations in relative mass inertia and

center of mass.

Although this aspect is important for modeling, no live function has been implemented
to compute the tank shape in high-¢ conditions based on the experienced accelerations.
Practically, two setups can be considered based on the offset angle 6,. For 6, < 45°, it

is reasonable to assume the tank retains its vertical geometry. For 6, > 45°, the tank
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geometry can be considered rotated along the perpendicular axis. For instance, an
oblate tank may behave as prolate under certain accelerations, while a rectangular tank
effectively rotates, flipping its side dimensions. Cylindrical tanks are more complex but

can be approximated as rectangular for initial analyses.

The equations of motion are first derived in a 2D projection, considering only the zz
plane. Ignoring the feedback interaction with the spacecraft’s degrees of freedom,
the only free coordinates describe the motion of the included pendulums. When
only the first sloshing mode is considered, the dynamics are captured by a single
equation, corresponding to the angle of inclination v of the pendulum rod relative to

the equilibrium position ().

The reference frame is centered at the geometric center of the tank, with axes aligned

to the tank’s body frame.

Considering the Lagrangian for the pendulum, which bob mass is considered

inertialess, it results

1 1
[,:§mv2+mv-ﬂ><r+§m(Q><7")2—ma-7°—U (4.1)

where the vectorial terms are expanded for this configuration as:

position vector r = [—Lsinyy 0 hl — Lcosi|;

velocity vector v = ¢)[—Lcostp 0 Lsini];

frame accelerationa = [a, 0 a,];

frame angular velocity @ = [0 w, 0];

while the products v - Q x 7 and (2 x r)? result in

(ﬁ X F)2 =[rwy, 0 —ruw
2 2 29 (4-2)
= [(h1l — Leos)"w, 0 L cos ]
and
U (Q X F) = [erzwy 0 —v,rpwy
(4.3)

= — (hy — Lcos ) w, L costha) — L*sin® ¢ w, 1)
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Assembling the terms in a scalar way, the resulting Lagrangian is

1 . . .
L :§m¢2(L20052w + L?sin*y) + m(—(hy — Leosy)w, Leosyrp) + mL?sin*yy)
1
+ Em«hl — LCOS@D)sz + LQSinzzﬂw;) + ma,Lsiny + ma,(—hl 4+ Lsiny) — U

(4.4)

To derive the EOM fory, £ need to be derive by the derivative of the generalised

coordinate as

d (0L oL
I (@) - % = Qy (4.5)
oL . 9
8_¢ = mapL* — mhy Leosypw, + mL w, (4.6)
7 % = mwL* + mh, L sinw,p — mhy L cos Yuw, + mL-w, 4.7)

oL
Y

ou
Ll

= mhyw, Lsinyy) + mLhy sinyw, — ma, L cosy + ma, L sinty — (4.8)

The resulting equation of motion describing the evolution of the pedulum bob position,

in a tank subjected to acceleration and pitch is

mL%ﬁ — mhyw, L cosy + cZ)ymL2 — mhy sin wwi — magLcosy (4.0)
4.9
+ ma,Lsiny +m(g,Lcosy + g.Lsiny) = Qy

Where as potential expression has been added the gravitational influence with its
components on the zz plane. When the spacecraft is not aligned with the direction
of the gravitational field, it is not possible to consider gravity only acting on its
longitudinal axis, but instead it needs to get decomposed on projections on the body
frame axis. Given a model in the inertial frame representing the gravity gradient, with
the known rotation matrix Rp; from inertial to body frame, it is possible to input the

right components.

As generalised forces applied on the system, some disturbances can be added, also
expressed in body frame coordinates. Here the term (), can include also the expression

for dissipation, which cannot be added in the classic Lagrangian. In particular, from
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the derivations explained in Chapter 3, the damping coefficient is included as

sti = _C@b (4.10)

where ¢ is a coefficient based on the damping ratio ¢ and shaped to contribute as

angular dissipative term.

This equation is implemented in the Simulink model under the Mode 1 block. It
describes the position of the pendulum mass in the body frame, which is always aligned

with the effective acceleration vector.

In this formulation, the tank motion is considered known and is not coupled back to the
sloshing motion. When full coupling between the pendulum and the spacecraft/tank
motion is considered, xz and zp also become degrees of freedom, representing the
translations along the body = and z axes, respectively. Additionally, pitching is treated

as a generalized coordinate, denoted by 6.

The setup differs slightly because the tank motion no longer appears as pseudo-forces
acting on the internal motion. The velocity vector must now be expanded to include
all terms that cannot be neglected (see Landau’s derivation for an accelerating frame

in[17]).

Velocity is defined both for the pendulum mass and for the static mass. The static mass
is referenced to the tank center and added to the static fluid mass, denoted as M. The
inertia /3 is also assumed to be referenced to the tank center. For the fluid mass, this
is straightforward, while for the remaining spacecraft mass, the parallel axis theorem

must be applied twice in this setup.

The pendulum velocity is then:

—

d -
Upend = UB + d—z +Qx7 (4.11)

The resulting Lagrangian for the fully coupled dynamics is computed as

L= %m@szQ + map((—hy 4 Leosy)w, Leosh) + mL2sin>uw, i

1 1
+ §m(h1 — Lcos¢)2w§ + EmLzsm2¢w§ + mLagsiny+ (4.12)

1 1.
— mazhy + ma,Lcosy) — Upena + §M(1:'32 + 25%) + 59213 —Up
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With some derivation in the same fashion as the equation derived above, the resulting

dynamics of the coupled motion are the following four:
« pendulum angle v:

m&L2 = —mL%0 + mhléLcosw + mh192Lsz’nw + mLcosy(ip + 239)4—

s OUpena  OU (4.13)
— mLsiny(ip — 2p0) — 52? 4 _ awB + Qy

 body traslation on x axis z p:

(M 4+ m)ip=— Y?*mLsiny 4+ YmLcosy) — mé(hl — Leos)) — mp Lsiny+

aUpend aUvB
B 8xB al‘B + QBI
(4.14)
 body traslation on z axis z3:
(m + M)zg =*>mLcosy) — mLsiny — OmLsiny — mb Leosi+
_ Wyena _ U (4.15)
8zB &zB 5

« rotation of the body 6:

(I +mL? 4+ mh? — 2mhy Leos)) = ¥(mL? — mhy Leosih) — ih*mhy Lsiny+
— 2pmhy Lsind — mLcosy(—ip + 2500)+

— ¥ghym — mLsinw($B¢ + Zp) + Qo+
B a[]])erin B aUvB
00 ol

(4.16)

In these derivation the generalised forces ); can be inserted as also damping on
different DOF. Although here only the sloshing damping is relevant. Other forces
and torques that can fall under this description are the forces from the thrusters or
the torques from reaction wheels using for maneuvres. In this case the right handling
of these terms is through virtual work and respective generalised force acting on the

correct system component. For a thrust or a torque given in body frame, the virtual
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work is
SW = F - Srp + 75¢ (4.17)

The respective generalised force for a force acting only at the tank center is

Qi = F. agank (4.18)
q;

and for a force acting at the hinge of the pendulum is

=t armnk = aTpend

— F
@ 0g; dq;

(4.19)

The same approach applies to generalized torques. In this way, the control action
applied through hardware enters directly into the equations of motion, making
it possible to monitor the evolution of the fluid motion for any control input

received.

When extending the model to three-dimensional motion, it is useful to describe the
possible alternatives. The fluid responds to lateral motion with perturbations confined
to the plane of the applied force. Therefore, a fluid receiving an input along any axis
will tend to oscillate and eventually damp only along that axis. It is physically justified
to consider planar motion when a disturbance is received. Aligning the main thruster
with the fixed reference frame simplifies the analysis; otherwise, a rotation matrix can
be used to align the thrusting or torquing axis with the tank axes. Off-plane fluid
motion, referred to as swirling, is induced by a periodic lateral disturbance with the
same frequency as the slosh natural frequency. For this initial model, this motion
can be neglected. An alternative is to model the fluid as a spherical pendulum, which
is inherently three-dimensional but results in much more complex equations when

coupled with spacecraft motion.

To achieve a computationally lighter and physically intuitive model while retaining
dynamic accuracy, a double-plane assembly is used for three-dimensional fluid
motion. Specifically, the pendulum motion in the zz plane, excited by pitch and
acceleration, is paired with an equivalent model in the yz plane. In this setup, the
degrees of freedom for high-g sloshing, when fully coupled with the spacecraft motion,
are: [5,Y5,25,02,0,,1: ,1,]. The spinning motion of the longitudinal direction (6,) of
the tank is modelled separately. It becomes relevant for motions typical of the first

phases of a mission,as launch and despun.

63



CHAPTER 4. MODES DYNAMICS AND IMPLEMENTATION

Figure 4.1.2: 3D set up-z coordinate constraint

In this configuration, the same pendulum model is used on both planes. The pendulum

position in each plane is:

Tpend,. = |—Lsiny, 0 hl— Lcosd)m} Tpendy. = [O — Lsinyp, hl — Lcosy,
(4.20)
From these vectors, it is evident that the 2 component is computed in the same
way in both planes but depends on different angles. The two expressions cannot be
treated independently. Therefore, only the lateral components x and y are used from
each plane in the three-dimensional model.Instead, the vertical component >z must be
recomputed as a function of both angles to satisfy the physical constraint of a rigid

pendulum rod.

The 2(¢;, ¢,) component can be derived from the pendulum length L derived as:

(xpend(wz))Q + (ypend(¢y))2 + (A1 — 2(¢a, ¢y))2 =L? (4.21)

and z results from the nonlinear expression

Z(l/}:va ¢y) =hl— \/L2 - CUpend(lb:cy - ypend(wy)Q (4*22)
that when the component y, = O results z = hl — /L? — 22, , = h1 — Lcosy,

To finilise the computation and write the correct Lagrangian the pendulum mass
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3 d en
velocity =24 becomes:

Foend = | ~Lsint,  — Lsint, 01— \/TF T (Lsing, 2 + (Lsint, P (4.23)
drpen
Upend = dpt d
I o . Lsiniy- (P cosis) . Lsiny-(y Leosiy)
= l Yy Leosip, Yycosy,  ( /L2 +(Lsinis )2+ (Lsiniy )2 \/L2+(Lsinwm)2+(Lsmwy)2):|

(4.24)

This velocity component of the pendulum mass must be combined with the tank
velocity and the contribution from tank rotation.The Lagrangian of the coupled system

becomes:
1 R P P
L= §m(vpend + v + 2 x Tpend) + §MUB + iQIBQ - ‘/pend - VB (425)

This mode represents the oscillation of a fluid under high magnitude accelerations.
This condition is characterised by high amplitude oscillations and, potentially,
important and abrupt changes of direction of a.s;. For this reason, the dynamics of
the pendulum cannot be linearised. Models found in literature -mostly linear- do not
provide coverage for cases where the direction of the acceleration vector varies in the
time evaluated, while, for this kind of application, this aspect must be considered.
Moreover, the mass oscillating under external inputs can provide high torque and
forces coupled with the spacecraft, also due to the great displacement. For this reason,
the pendulum model has been kept as abstract parametrization of this movement,
trying to fit it to the complete scenario of external disturbances with no assumption
of small angle approximation validity. The physical constraint of the tank walls plays
a role in the motion of the mass, especially if referred to the pendulum rod length.
However, as already mentioned in the previous chapter, as first approximation, the
influence of tank walls is assumed not relevant. This is especially valid due to the
higher amplitude that characterises lower filling ratio scenarios, to which correspond

also shorter equivalent pendulum rods.

4.2 Equations Mode 2

In low-g conditions, which are reached at different stages depending on tank

dimensions and fill ratio, the fluid is modeled as clinging to the walls of the tank. The
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Figure 4.2.1: Mode 2 physical model, cross section view
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assumption in this model is that the fluid orientation in the tank can be inferred from
previously experienced high-g sloshing. Specifically, the position of the pendulum
mass from the high-g model is passed to the low-g model to define the fluid mass
location. Infact, the position stored of the mass woudl get passed to the model
for capillarity, and there the mass would be based. The available orientations are
horizontal or vertical sides of the tank, with opposite directions. For pendulum angles
within —45° < ¢ < 45°|| — 135° < ¢ < 135° the capillarity model is applied along the
longitudinal direction of the tank. Outside this range, the perpendicular geometry is

used, according to the guidelines presented earlier.

This approach requires, for each tank under analysis, the identification of
configuration parameters and the implementation of a memory block and switching

logic to determine which model to use at each transition.

Compared to the pendulum model, the low-g model demands greater attention to tank

geometry and careful handling of different fill ratios, especially for curved tanks.

A planar representation of the capillarity effect on fluid contains three masses,as in
Figure4.2.1. These masses are connected to each other to physically represent the

surface tension of the fluid and its resistance to separation. All these three masses have
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position and velocity vectors which contribute to the total Lagrangian. However, the
degrees of freedom are only two: x5 and z3. The other masses have dynamics constraint
to m3; motion. From geometric relationships, it is evident that once z;; and zy, are

known the vertical motion of the lateral masses stands to

D
(28, + (5 + 3)?) = d* = const (4.26)

or in other terms using one DOF for each lateral mass

Z; = dsm@z

(4.27)
Ty = 5 dcosty = dcost,

—dcosb1+ % )

implying 6, = acos(——

In either way the constraint of the rigid rod is maintained, describing the coupled
up-and-down motion of the lateral masses. The nonlinearities derived can become
difficult to handle in the derivation, due to much more complex chained rule terms.
Moreover, the system is not easily tunable for different fill ratios. It is relevant to relax
the rigid rod constraint to include in the model a tunable parameter that represents
the difference in height reached by the fluid in high fill ratio and low fill ratios, where

the fluid clings even more.

For this reason a new parameter « is introduced. It is shaped to create the
mathematical constraint between variables, maintaining 3 and z3 the only degrees
of freedom and it is a linear function of the fill ratio. In particular, it can be expressed

as
a(fill,) — ao(1 — fill,) (4.28)

where « is derived based on

2= 2+ — (23 + D/2)?

ﬁ} _ x3+ D/2 |
dy | #3=0 " [ — (25 + D/2)? *=" (4.29)
D/2
- /&2 =D?%/4

and d can be expressed as y/D?/4 + 22,, resulting in the defining equation function of
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all known terms, from geometry of the tank and parameters computation as in

NGy
ap = YU/ 2 (4.30)

201

The horizontal component of the position vector of the model in xz plane is instead
based on geometry only. Taking the width of the tank, constant or varying with fill
ratio, at the fluid height before computing the curvature height, the position of the
lateral masses on the x axis is zg; = —%D and xpy = +%D. While the vertical position,

for what derived above, is:

21 = 201 — Q- T3+ 23+ Zo3
(4.31)

29 = Zoo + - T3 + 23 + Zp3

The position vectors become:
i pOSitiOH my. Ty = [—% 0 2zp1—a-x3+ 23+ 203];

e position my: 7o = | 0 zoo+a-x3+ 23+ 203);

@[3

e position mg:rz = [z3 0 203 + 23);

The respective velocity vectors are:

e velocitym, w; = [0 0 23 — auis);

« velocity moive = [0 0 Z3 + adsl;

« velocity ms: v3 = [13  0Z3];

To derive the equation of motion describing the evolution of the dynamics of the three
masses in low-g, Landau derivation is used as in the section above. Simply, in this
model the formalism is applied to all the three masses and it will present additional
terms of potential energy given by the two springs. This mechanical addition serves
to keep into consideration the oscillating motion of the fluid but also its intrinsically

elastic energy. The Lagrangian for this model, when the tank is considered the
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accelerated frame and no full coupling is considered is:

1 5 = L= 1 . = L=
L :§m1<1}12 + (Q X 7"1)2 -+ 2U1 O Tl) + 57712(’022 -+ (Q X 7’2)2 —+ 2’02 O 7"2)+
1 52 (B )2 - B e e e
+§m3(vg + (2 x 73)° + 205 - Q X T3) —myd - 11 — maed - 75 — M3d - T3+
1 1

- §k31$§ - §k32Z§ V=V =V

(4.32)

Where the potential contribution on each mass can be added under the relative V;.
However, for the conditions for which this model is assumed relevant, the gravitational

potential can be neglected.
When developing the products of vector, the Lagrangian in scalar components is

1 . ) o ) .
L :aml(z‘% + o33 — 2aidsis + wz(Zog + 23 — axs + 201) + wjx%l + 2(73 — ads) (—xo1wy) )+

1 . . . . .
+ §m2(z§ + o33 + 2323 + ws(zog + 23 + axs + 202) + wixé + 2(Z5 — ads)(—zoowy) )+

1
2 | 22 2 2 2.2 . .
+ §m5(x3 + 23 + w, (203 + 23)° + w, T3 + 203w, (203 + 23) — 223w, T3)+
—myap, Ty — Miap, (Z03 — ax3 + 201 + 23) — Maap, Loz — Maeap, (203 + ax3 + 202 + 23)+

1 1
2 2
— mzap,Ts — M3ap, (23 + 203) — §k31$3 — 5/{33223

(4.33)

After proceeding in the Lagrangian derivation and applying m; = m, = m, they result

as:
5&3(2ma2 -+ m3) = — Oéwy(lﬁm —+ 1’02) — mgwy(Zog -+ 23) — M3wy23 — 777,3(le+ (4 34)
+ mngxg — matawy — ksxs + mwia(ong + 225 + 201 + 202)
23(2m + mg) = mwy($01 + $02> + mgwyz;g + mgwy,ég —ap, (2m + m3)+ ( )
4.35

+ mng(Z'og + 2’3) + mglL;gwy — k‘322'3 + mwi(?zog + 223 + 201 + 2’02)

When working in three dimensional environments the model gets slighlty more
complex in its set up. The shape of the equations remains the same but with few
added terms that make it a bit lenghty but with easy derivations. The 3D design can be

observed in Figures

The masses are now five, since the central mass which mimics the water under the
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Figure 4.2.2: Mode 2 3D model

Figure 4.2.3: Mode 2 top view, rods here are omitted for clarity

meniscus is still represented as m3. The raise of the fluid is now represented on all
body axes as approximation of the continuity of the fluid on the walls. The position

vectors are now:
* 7= [vor Y3 203+ zo1 + 23 — aws)
« Ty =[To2 Y3 203+ 202 + 23+ Qs
e T3 =[r3 Y3 23+ 203
o 7y = x5 Yod 203+ 23+ 204 — PYs3]
e 75 =[r3 Yod 203+ 23 + 205 + Pys]
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Where the new parameter [ is defined exactly like o but can present another value for
By due to different geometry of the cross section of the tank in the yz plane. The intrinsic
velocity vector of the masses inside of the tank, without considering the contribution

of the frame motion are:
U = [0 ?)3 i3 — Oéii‘?,]
® 172 = [O yg 23 —+ ai'g]

o U3 =[T3 U3 Z3

—

s Uy =[5 0 23— PBys)

—

e U5 =1[Z5 0 23+ By

The 3D Lagrangian fully coupled is:

1 - 1 lop =~ 1 1,1
L= Z;ff’ﬁmi(ﬁi + U5 +Q x7)* + §MU}’32 + 5QTIBQ — (§k:3;c§ + §k3y§§kggz§) —U;—Ug
(4.36)

The possibility to slide horizontally of the lateral masses is allowed due to the small
amplitude oscillations in low gravity conditions. Indeed this assumption holds for the
same conditions the capillarity mode in employed. For rectangular shapes this has
no assumptions needed, for vertical cylinders and oblate shaped this assumes that the
horizontal movement of the lateral masses follows a straight trajectory for the small

displacements.

4.3 Equations Mode 3

The bubble configuration models part of the unstable configurations that a fluid,or a
portion of it, can assume during transitions or under extremely low-g conditions when
subjected to small perturbations. The setup is conceptually simple and is illustrated in

Figure4.3.1.

Resting on springs, the fluid blob is held approximately at the center of the tank,
free to move under small perturbations. Its dynamics are dominated by surface
tension effects, which govern oscillations. The spring constants and the resulting
mass dynamics are therefore determined entirely by the capillarity of the fluid

interface.
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Figure 4.3.1: Mode 3 physical model, planar

Tracking the dynamics of this mass is important for simulation purposes, both to
monitor the motion of a coherent portion of the fluid and to estimate behavior during
transition times. The duration in which the drop mode is active corresponds to the

transition time defined in Chapter 3

Considering motion in the zz-plane, the position and velocity vectors of the drop

are
s Tarop =z 0 z];
* Ugrop =& 0 Z];
These vectors correctly represent the free movement of the drop inside the tank.

The contribution of surface tension is represented via springs connecting the drop to
the tank walls (center, bottom, and top). The deformation of each spring is computed
using the Pythagorean theorem, as the spring stretches or compresses when the drop

moves from the equilibrium center.

The elastic potential energy of a spring is proportional to the square of its deformation.
For a perturbed configuration, where the mass is displaced from the tank center, the

spring lengths can be computed as:

All = \/(L01 — 2)2 + .1’2 — LOl;

Alz = \/(L02 — .CE)2 + 22 — LQQ;

Aly = /(Lo1 + 2)? + 2% — Los;

Al4 = \/(L()Q + .17)2 + 22 — L02
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When these expressions are considered in the full Lagrangian for the derivation of the

EOM of the drop the expression results:

E:

m(z? + 22 + w2 + wsz + 2wy 2d — 2wy ) — mag,x — mapg, 2+

N — o =

k((\/(Lor — ) + 22 — Lot)® + (\/ (Loa — )2 + 22 — Loa)*+ (4.37)

\/(L()l + 2)2 + .CE2 — L01)2 + (\/(Loz + .CE)Q + 22 — L02)2)

+

—~

The derivation above describes the dynamics as stable in the ceter with forces pulling

from different direction and anchor-points. The EOM for this model are:

.o . . 2 . kaOI
MmE = —mwyz — may +mawy, +mwyz —mag, — 4k + V(L )2+ Tl
01 — 2 T
.38
_ kLoa(Loz — x) " kLox N kLoa(Loz + ) +0 (4.38)
\/(LOQ - QZ’)2 + ZQ \/<L01 + 2)2 + .752 \/(L02 + $)2 T 22 x
kLo (Lo —
mz = mwya'c + mc’uyw + mwiz —+ mwng — map, — Aky — \/(Lm( 01)2 z) :
01 —2)°+x
(4.39)
kL kLo (L LL
+ 02% n 01(Lo1 + 2) N 022 ‘e,

V(L —2)2+22 /(Lo +2)2+22  /(Lep+2)2+22
However, the assumption of fixed spring can be relaxed as explained in the previous
chapter, with the model still remaining a suitable representation of the physical model.
In fact, both model have been derived, so that with the verification of the results
can highlight the eventual differences - however, there are believed to be minimal.
When the springs are put on skids able to slide on the walls and be deformed only
longitudinally, the equation simplify considerably. This is valuable especially for the
fully coupled three dimensional case but it can be seen already in the 2D derivation
presented here below. When the deformations become simply:Al; = Al; = x and

Aly = Aly = z, the governing equations become

ML = —Mmwyz — mwy? + mwie — mwyz — mag, — 2kx + Qy (4.40)

Yy
mz = +mwy,x + mw,t + mwzz + mwy,t —map, —2kz+Q, (4.41)
When the three dimensional model is needed the previous equation adapt easily to

form the needed Lagrangian. It is important to notice that, differently from Mode 2,

the mass is not divided differently in the 2D setup than the 3D ones. What changes are
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the number of springs considered that pass from being four to being six, two on each

axis.
Therefore the fully coupled Lagrangian in 3D is:

1 g 1 1 — —
L= Emdmp(admpwﬁg ><f‘)2+§Mv792+§QTIBQ—k(x2+y2+ZQ)—UB—wap (4.42)

Ug could contain also gravitational contribution which might be disregarded here as
well. In U, some component of surface potential energy can be included. It is
important to acknowledge that part of the surface tension effects are already embedded

in the spring nature which is itself based on the elastic properties of the drop.

4.4 Switching Logic

The switching logic is modified from the blunt switch based on Bond number
thresholds. Instead, in a continuous way, some parameters, the weight functions, are
computed for every fill ratio and input condition which are shaped to compute the
relative dominance of each mode for every condition. The weights for each of the
three mode can vary from o to 1. This means that in ‘'mode dominance’ ranges for
both the stable modes, the relative weight of the representative dominant mode will
be computed as 1 and for the other two modes the weight will be 0. During transition
these weight are more varied. The transition, which is a unstable mode with computed
duration (transition time ¢,.,,s) comprehends all the modes at once, until the drop
mode is absorbed in one of the two stable modes with a function of time. A new stable
mode in included: this has a similar shape to the transitory configuration but it does
not have a limited time of actuation. It considered all the three modes at once and aims
to represent the range between Mode 1 and Mode 2 thresholds, where the dynamics is

not obeying to any specific mode.

4.5 Generalised Use

For the implementation of sloshing in a spacecraft with multiple tanks or other
flexible subsystems, the modeling approach presented in this thesis remains valid.
In particular, the method used to compute the dynamics allows for full coupling

between the spacecraft and the fluid, even though the resulting differential equations
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are nonlinear. Each subsystem i can be described by its own equivalent mass and
other matrices, M@ (¢"), O (¢®, ¢@), G®(¢"), as well as generalized forces Q" (t).
The matrix C' can be directly associated to terms as Coriolis force, depending on the
system velocity, while the matrix G contains terms depending on the system position

vector. These can be assembled into a global system:

> M) g+ > Ca4) i+ ) G = 3 QY

———

global mass matrix global Coriolis/centrifugal type forces global conservative forces global generalized forces

(4.43)
where ¢ is the global vector of degrees of freedom including all subsystems.

Within the Lagrange-d’Alembert principle, all non-potential effects can be introduced

as generalized forces and be collected into a function
an : (q7 q" t) }% Rn7
so that the equations of motion become

M(q) G+ C(q,4) ¢+ 9(q) = Qext(t) + @ne(q, 4 1)

This term includes the following contributions:

Qn(q,d) = —D(q) ¢, viscous/Rayleigh damping, derived from R(q,¢) = % ¢' D(q)q,

Qext(t) = u(t), external inputs, control, or disturbances.
and potential other terms with general nonlinearities functions of (¢;,¢;). This
formulation allows additional oscillating components to be incorporated naturally:

each new subsystem contributes its own matrices to the total system, preserving the

full coupling between spacecraft and all flexible or fluid elements.
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Chapter 5

Model Description and User Guide

The theory presented in the previous chapters shapes a relative Simulink model, which
this thesis has shaped in an initial form. This chapter aims to give a structure guideline
for a reader of the model. Here, all the derivation are explained in their applications

and the model created is described in its structure and its inputs and outputs.

The AOCS model that this thesis research for, was aimed to interface the slosh model
with an already coupled system, where the spacecraft had added dynamical terms from

control hardware, solar array or other structures.

The results found in the previous chapter create the base and the theory to shape
a model which is adaptable to different fluid, tank shapes(rectangular, cylindrical,

spherical and oblate(prolate)), tank dimensions, filling ratio and mission phase.

For this reason, some inputs and parameters need to be described before running
the model describing the switching condition and the dynamics of the modes. In
particular, in this chapter the “general conditions” are going to be introduced as used

in the model.

5.1 Fluid Parameters

The propellant used in the tank can be different, and few parameters describe its nature
impact on the motion. In particular, in a file of variables initialization, the fluid density
p and the fluid tension o need to be set. For the current model, the dynamics is based on
a fixed value of contact angle 6. which is taken as 6, = 0, which is found to be accurate

for common space propellants[NASA_ Cold-sat][8]. If its precise value is available,
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it can be directly included in the formula of the Bond number as by definition. The
presented parameters enters as workspace variables computed at the beginning of the

simulation.

5.2 Tank Shape and Dimension

The tank shapes are labeled with a numbered constant that identifies Rectangular
shape with ”shape=1”, Cylindrical shape with “shape=2”, and Oblate shape with
“shape=3”. All the parameters for spherical tanks are also derived but not yet included
in the files’ structure. The characteristic dimension of the tank is also needed with the
current inertia computation block, and can be set in the same file. Throughout the
proposed model structure, conditional blocks compute the needed parameters based

on the shape set at the beginning of the simulation.

Moreover, the functions found in Chapter 3 describing the evolution of parameters for
different tank shapes should be included in the Matlab function block of "parameters
computation” which includes COM displacement and total propellant mass in the
current model. The last term is a linear decrease of the propellant with fill ratio that

can be easily shaped for any needed condition.

The MAIN file calls generate_fluid_tank_param, where the dimensions and the volume
of the tank are set in a switch case based on the shape description label. Here, the fluid
height parameter is computed as time-series with an approximation. The file should

be integrated with the resulting relation linking fluid height and fill ratio as in Chapter
3 3.18.

The shape-dependent parameters for Mode 2 and Mode 3 are dynamically computed
based on the variable shape within the model. For Mode 3, parameters such as
spring lengths are directly evaluated within the corresponding enabled subsystems.
More complex is the initialization of the Mode 2 masses’ positions, which depends
on both the fill ratio and the tank geometry and therefore needs to be calculated
during the simulation run-time. Within the Mode 2 enabled subsystem, the MATLAB
function mode2_get param computes the equivalent mechanical parameters of a fluid
under microgravity conditions as a function of the tank geometry and the fill ratio.
Its inputs include the total fluid mass myy, the apparent acceleration vector ag,

the liquid height i, a geometry selection parameter (caso, distinguishing between
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rectangular,cylindrical and oblate tanks), and the fill ratio f,.

For the planar setup, the fluid is modeled as three equivalent masses: two lateral
masses (m; and m,) and one central mass (m3). Their vertical and horizontal
positions (2o1, 202, 203, Tm1, Tm2) are determined according to the selected geometry.
For rectangular or cylindrical tanks, direct geometric relations are used, while for
oblate tanks an interpolation based on pre-defined data is applied to determine the

characteristic heights (amg, bmg) as a function of the fill level based on the results in

[19][9].

The model also computes the horizontal (k3,) and vertical (ks.) stiffness of the central
meniscus, estimated respectively from the apparent gravitational force (gt = ||az||)
and from a characteristic fluid parameter. The horizontal damping coefficient c3, is
assumed for the case studied but the results from Section 3.5.1 should be applied for
each shape by the classical relation ¢ = 2¢v/km.

Regarding the drop mode, no influence on its setup comes from tank shape except from

the length of the springs implicitly derived.

Finally, dimensions and shape of the tank influence strongly the whole computation
of static inertia executed in each mode. For Mode 1 the inertia is computed a simple
solid equivalent for each partially filled tank shape. For Mode 2, inertia is included
in the initial parameter computation proceeding with a base component of the fluid
non-implied in the meniscus (representative of Mode 1 inertia), then adding to it the

contribution of the lateral and central masses.

In particular, the static inertia of a partially filled tank can be estimated by treating the
fluid as a rigid body. For rectangular and cylindrical tanks, the fluid is approximated
as a block of height equal to the fill level. The inertia about a horizontal axis is then

computed using standard formulas:

h? B?

Lreet = Mftuid 5~ + Mifid 75 (5.1)
h? R?

Iy = MAuid 5 + Miuid (5.2)

where 1 is the fluid height, B the rectangular width, R the cylinder radius, and mgqyq

the fluid mass.
For spherical or oblate tanks, the fluid distribution is more complex. The inertia
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can be approximated by decomposing the fluid into horizontal disks corresponding to
the relative height cross-sections, by using hemispherical/ellipsoidal approximations
or simply by using rounded rectangular container values instead. These approaches
provide a practical estimate of the I,,.., representing the bulk fluid mass, which is valid

for both high-g and low-g static conditions.

In low-gravity conditions, it is needed to consider the fluid rise along the walls that
forms a meniscus. In the model, the contribution of the fluid rise along the wall
is computed by the parallel axes theorem applied to the discrete lateral and central

masses mj, mo, m3 located at positions (x;, z;):

Imeniseus = M1 (2] + 23) + mo(x5 + 23) + ma(z3 + 23). (5.3)

The total inertia when considering the planar motion is computed as:

Itotal = [base + [meniscu57 (54)

Some additional investigations can be done also via CFD for the accurate inertia
computation. However, the presented framework is present in the model to contribute

to a complete analysis.

5.3 Environment Inputs

To run the simulation in planar setup the acceleration and rotational behavior of the
tank can be shaped to represent different mission phases. These are designed in the
file generate_inputs that shapes the time-series vector for acceleration, rotation and
angular acceleration vector for various cases. launch represents launch conditions
by high magnitude [multiple g, m/s?] acceleration varying in axes components due
to a slew rotation. This aspect is particularly interesting for the validation of the
body frame component when visualizing the high-g pendulum position during the re-
orientation. orbit takes typical angular rotations and low thrust by typical maneuvers
in orbit. In this case the magnitude of the acceleration is low [gy - 10~'m/s?] and
the representative mode can vary for different tank dimensions and fluid densities,
potentially being already a representation of the intermediate Bond number range.

Also inputs from typical Comet-I orbit maneuver are included. idle represent no
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maneuvering spacecraft, which falls into low-g conditions. Different orbit levels of
effective gravitational accelerations are modeled to analyse respective behavior of
various sizes of tank. Other cases as separation try to model short impulses and
characteristic behaviors. If the 3D model is considered the inputs that need to be
shaped are forces and torques which govern the dynamics via generalised forces in the
respective EOM derived from the Lagrangian. These are the external contributions to

the motions when the tank motion is described by all degrees of freedom.

5.4 Switching Condition

In the computational implementation of the model, the switching condition has been
at first model as sharp switch between stable modes. However, it has been considered
valuable to design a more physical and gradual transition from a stable mode to the
other. A approximate system has been written but it does not result fully integrated
with the functional model. In particular the model considers an intermediate range
0.1 < Bo < 10 where the two extremes are related by a connecting function, such
that the intermediate dynamics of the fluid is defined as influenced by both modes.
As mentioned in previous sections, the transition from low-g dominance to high-g
dominance can be considered logarithmic. For this reason, the two ranges can be
connected by a logarithmic function of Bo. The relative weights of these two mode

are:

. logBo — log0.1
wy = maz | 0, | min log10 — log0.1"’ 1

wy =1 —wl

This represents a stable intermediate configuration in a range where any dominance
can be established by analytical or experimental results reviewed. When the drop is

activated, the weight of its mode is based on the transition time passed as

t

Then all the computed weights are normalised to have a total weight of 1. In
such way mass stays constant and defined from function parameters, and does not

create unjustified extra energy of the system. The same attention should be put
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to other variables computed in the dynamics. For the output of evolving DOF
overlapping some fine averaging could be necessary on the generalised coordinate and

its derivatives.

From this derivation, the total configurations are: dominance of Mode 1 (stable),
dominance of Mode 2 (stable), intermediate range with constant Bo value (stable),
transition with drop activated (unstable, lasting ¢,). The modes’ weights are computed
in the Bond number block and all the dynamics subsystem are run in parallel. The
respective outputs are weighted after the dynamics computation to output forces,
torques and MOL. This part of the implementation in the model is not completed and

needs to be reviewed and made functional on this base.

Naturally, such switching behavior is thought to output smoother functions and not
to represent modes as separated fluid motion. However it is only a draft on which to

elaborate when validation results are available.

The model can be run in a planar setup with a sharp-switch condition, providing
outputs for position and forces. However, it requires further refinement to incorporate
all the theoretically derived parameters and three-dimensional dynamics, which the
author could not include within the time-frame of the thesis. Priority was given to
establishing the functions and equations together with the Simulink model framework.
As an initial step of validation, the input parameters can be adjusted to simulate
experimental setups reported in the literature, allowing comparison of the model’s
force outputs with commonly measured experimental values. However, identifying
representative experiments for all required cases may not be trivial. In general, for
preliminary results under low-g and high-g conditions, the oscillation frequencies
and position vectors have been compared to analytical values and realistic maneuver
scenarios, showing satisfactory agreement. Due to the complexity of the setup,
validation of the equations and functions requires ad hoc experimental setups, using
pressure sensors or optical devices to track oscillatory behavior, or computational fluid
dynamics (CFD) simulations to fine-tune and correct parameters based on analytical

studies.
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Conclusions

The aim of this thesis was to investigate the phenomenon of sloshing, both from the
perspective of its physical behavior and its influence on spacecraft maneuvering and
stability. Sloshing is of particular concern in the AOCS domain because the movement
of fluid can shift the spacecraft’s center of mass and generate forces and torques that
could destabilise the structure or the efficiency of AOCS hardware itself. A review of
the existing literature revealed that a common approach to address sloshing is through
CFD, which, although accurate, is computationally expensive and less practical for

simulations.

Recognising these limitations led to a key objective of this work: the development of
a sloshing model that preserves physical accuracy while remaining computationally
efficient for use in AOCS simulations. The importance of such modeling lies in the fact
that propellant mass can account for a substantial portion of a spacecraft’s total mass.
Therefore, fluid motion can strongly couple with spacecraft dynamics. If uncontrolled
or unaccounted for, this coupling can compromise stability, control and performance.
In particular, resonances between fluid oscillations and spacecraft structural or control

frequencies must be avoided to prevent detrimental amplification effects.

To address these matters, studies spanning from the 1960s to the present day
were reviewed, and data were collected from experiments and analyses on different
tank geometries and operating conditions. These datasets were organised and
merged to establish parameters for mechanical equivalents across different mission
stages. Combining results from diverse experimental setups was especially valuable in

addressing variations in tank geometry, as very few experiments have examined the
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same behavior across all common tank shapes. Based on these data, new models were

developed and analysed in greater depth.

A key contribution of this thesis is the development of fully coupled equations for
three different mechanical-equivalent models of sloshing, thereby extending their
applicability to a wider range of spacecraft configurations. Different phases of the
mission were mapped to representative modes, each with derived governing equations.
A switching-mode system was implemented, and a Simulink model was created for
integration into an AOCS simulator. Inputs and outputs were selected to match OHB’s
AOCS dynamic model, ensuring compatibility with industrial simulation frameworks.
The ability to switch between distinct sloshing models during a mission is a novel
feature of this work, enabling accurate representation of varying fluid behaviors under

different operational regimes.

The model structure allows for the implementation of multiple oscillating subsystems,
which is particularly advantageous for modular AOCS setups. It is designed to operate
under any thrusting or maneuvering condition, tank geometry, or propellant type,

making it versatile and reusable across a broad range of spacecraft projects.

In particular the following modes have been shaped, and combined in transient states,
for the analysis: Mode 1 describes high magnitude effective acceleration applied to the
tank. The fluids accumulates on the tank in the direction of the effective acceleration
and undergoes to potentially high amplitude oscillations: Mode 2 describes the
behavior of the fluid in microgravity. The fluid configures in the tank in different
way, modifying the mass distribution of the the tank, while the oscillation are slower
and of smaller amplitudes. Mode 3 is a transitory state describing part of the fluid

concentrating in a drop, free moving in the tank.

6.1 Discussion

The developed models preserve the key parameters as oscillation frequency and main
masses motion consistent with the physical fluid motion. Nonetheless, to produce and
derive governing equation which were both analytically and intuitively accessible and

tunable some simplifying assumptions were required.

 Only the first sloshing mode was considered relevant and modeled for all three

representations.
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« Some parameters still rely on linear approximations even for curved tanks,

particularly in Mode 2 for the skidding of lateral masses.

» In Mode 2 and Mode 3, the discrete distributions of masses and springs were
intended as initial approximations of continuous mass and force distributions.
These could be refined by using annular rings for the raised fluid mass or by

increasing the number of springs to better capture the spherical elastic response.

A further challenge was the lack of comprehensive datasets covering all combinations
of tank shape, fill ratio, and gravity level for the oscillation characteristics of
the capillarity-dominated case. This limitation led to certain parameters being
estimated from incomplete information, and these should be revisited through
targeted simulations or experiments. Finally, as discussed at the end of the previous
section, the application of the actual Simulink model are, at the moment, limited to a
planar case. All the theory needed to set up the equivalent 3D case are all presented in
these thesis, basically focusing only on the different EOM derived with multiple degrees

of freedom. The set up of the switching logic can be kept the same.

6.2 Future Work

The  present model is fully functional and  integrated into
Simulink for most components, with some equations already computed and ready for
block implementation. For the next steps of this project, it is important to validate the
output results of this thesis work and proceed with the integration of the model with

the complete AOCS framework. In particular:

« Experimental validation: testing selected tank geometries under controlled
conditions to verify oscillation frequencies, damping behavior, and coupling
effects with spacecraft motion. While challenging in an industrial environment,
such experiments would provide high-confidence validation for the simplified

mechanical-equivalent approach.

« CFD-based validation: running CFD simulations for different tank geometries,
fill levels, and acceleration/rotation profiles to generate reference data.
Extracting key parameters (forces, interface shape, oscillating mass, total system
energy) for comparison with the mechanical-equivalent outputs. These would be

then used to tune or modify parameters shaped in Mode 2 and Mode 3, and in
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curved tanks.

« Controller design and integration: using the present model as plant for the
designing of feedback and feedforward control laws. These could be tested to
damp the disturbances of sloshing actively, while being integrated within the
AOCS simulation environment to assess its impact on pointing stability and

maneuver accuracy.

« Switching system refinement: the switching system, implemented both in
discrete and continuous form, is generalised and uses representative but
simplified thresholds, especially for Mode 1 and Mode 2 dominance. These
thresholds should be tuned based on monitored parameters from simulation or
fight-data when available. This would ensure higher accuracy and reliability of

the model in different mission phases.

« Non-linearised model -physical constraints: the physical constraint of the tank
geometry and components should be analysed with regards to the impact on the
equivalent model dynamics. Analysis on the effects should also be performed
to see the actual impact of possibly incoherent geometry on the actual dynamics

results.

« Swirling and spinning: more work should be done to define the lever of
relevance of the fluid swirling or spinning during flight and in case to add modes
representing these conditions. As for current situation, the spinning has been
considered only along the longitudinal axis in a separate mode not fully wired to

the rest of the model.

In conclusion, this thesis delivers a flexible, reusable, and broadly applicable sloshing
model that combines physical accuracy with computational efficiency, making it
suitable for a wide range of spacecraft configurations and mission profiles. Before
advancing to control design, the model should be thoroughly verified through targeted
experiments and high-fidelity CFD simulations to ensure its predictive accuracy
under different operating conditions. Once validated, the natural next step is the
development of a dedicated controller capable of actively mitigating sloshing effects,
thereby enhancing the stability, precision, and reliability of future spacecraft AOCS

systems.
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