
Degree Project in Technology

Second cycle, 30 credits

Predictive Controllers for Load
Transportation in Microgravity
Environments

SUJET PHODAPOL

Stockholm, Sweden, 2023

Predictive Controllers for Load
Transportation in Microgravity
Environments

SUJET PHODAPOL

Master’s Programme, Systems, Control and Robotics, 120 credits
Date: November 18, 2023

Supervisor: Pedro Roque
Examiner: Dimos V. Dimarogonas

School of Electrical Engineering and Computer Science

© 2023 Sujet Phodapol

Abstract | i

Abstract

Space activities have been increasing dramatically in the past decades. As a
result, the number of space debris has also increased significantly. Therefore, it
is necessary to clean up and remove them to prevent a collision between space
debris and spacecraft. In this thesis, we focus on load transportation using
tethers, which connect multiple robots and loads together with lightweight
cables. We propose a generalized framework to model and calculate the
interaction force for the tethered multi-robot system. Then, we develop
centralized and decentralized non-linear Model Predictive Control (MPC)
controllers to complete a transportation task. Two simulators, a numerical and
physical simulator, are presented and used to evaluate the performance of the
controllers. The numerical simulator is used to verify the proposed model and
evaluate the controllers for the ideal case. The physical simulator is then used
to validate the performance of both centralized and decentralized controllers
in real-time settings. Finally, we demonstrate how the proposed controllers
perform in two and three-dimensional experiments.

Keywords

Model Predictive Control, Decentralized control, Multi-robot systems, Space
technology,

ii | Sammanfattning

Sammanfattning

Rymdaktiviteter har ökat dramatiskt under de senaste årtiondena. Som
en följd av detta har mängden rymdskräp också ökat avsevärt. Därför är
det nödvändigt att rensa upp och avlägsna detta skräp för att förhindra
kollisioner mellan rymdskräp och rymdfarkoster. I denna rapport fokuserar
vi på transporter av rymdobjekt som är sammanbundna via en lätt kabel. Vi
föreslår en allmän metod för att modellera och beräkna interaktionskraften
för det förenade multirobotsystemet. Sedan utvecklar vi centraliserad och
decentraliserad icke-linjär modell-prediktiv reglering, MPC (eng. Model
Predictive Control), för att uppnå transportuppgiften. Två simulatorer, en
numerisk och en fysisk simulator, presenteras och används för att utvärdera
styrsystemets prestanda. Den numeriska simuleringen används för att verifiera
den föreslagna modellen och utforma styrsystemet för det idealiska fallet. Den
fysiska simuleringen används sedan för att validera prestandan för både det
centraliserade och decentraliserade styrsystem i realtid. Slutligen demonstrerar
vi hur de föreslagna styrsystemen utför sig i tre- respektive två-dimensionella
experiment.

Nyckelord

Modell-prediktiv reglering, Decentraliserad reglering, Multirobotsystem,
Rymdteknologi

Acknowledgments | iii

Acknowledgments

First of all, I would like to express my gratitude to Professor Dimos V.
Dimarogonas for giving me the opportunity to do research on this interesting
topic. I especially would like to thank my supervisor, Pedro Roque. He
provided me with a lot of helpful feedback and suggestions during the project,
which helped me to get the most out of this project. I also would like to thank
PhD students in the DISCOWER project, especially, Elias Krantz, for helping
me with the thruster system and experiments.

This project is done under the DISCOWER (Distributed Control in
Weightless Environments) project in Space Robotics Laboratory.

Space (Robotics Lab), Stockholm
October 2023

Sujet Phodapol

iv | Contents

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Related work . 4
1.3 Structure of the thesis . 6

2 Background 7
2.1 Quaternion . 7

2.1.1 Quaternion Algebra 8
2.1.2 Quaternion Differentiation 9
2.1.3 Quaternion Distance 10

2.2 Model Predictive Control . 12
2.2.1 Constrained Finite Horizon Optimal Control 12
2.2.2 Receding Horizon 13
2.2.3 Direct Single and Direct Multiple Shooting 14

2.2.3.1 Single Shooting Method 14
2.2.3.2 Multiple Shooting Method 15

3 Systems Dynamics 17
3.1 Modelling of a single free flyer 17
3.2 Modelling of an n-agent tethered system 20
3.3 Modelling of a tethered system in planar coordinates 24
3.4 Equilibrium of the system . 26

3.4.1 Equilibrium of the n-agent tethered system 26
3.4.2 Equilibrium of the planar tethered system 27

4 Controller Design 29
4.1 Centralized Control . 29

4.1.1 Discretization . 29
4.1.2 MPC Formulation 30

4.2 Decentralized Control . 32

Contents | v

4.3 Pulse Width Modulation controller 34

5 Experiments and Results 36
5.1 Overview . 36
5.2 Numerical Simulation . 36

5.2.1 Three-dimensional Load Transportation 38
5.2.2 Two-dimensional Load Transportation 42

5.2.2.1 Point tracking experiment 43
5.2.2.2 Multiple points tracking experiment 46

5.3 Physical Simulation . 49
5.3.1 Simulator Description 49
5.3.2 Communication Framework 50
5.3.3 Model Predictive Control (MPC) Controller Node . . . 51
5.3.4 Pulse Width Modulation (PWM) Controller Node . . . 51
5.3.5 Experimental Setup and Results 52

5.4 Laboratory Experimental Setup 54

6 Platform description 56
6.1 Design Requirements . 57
6.2 Mechanical Design . 58
6.3 Pneumatic System . 59

6.3.1 Levitation System . 61
6.3.2 Thruster System . 62

6.4 Electronics . 63

7 Conclusions and Future work 65

References 67

vi | List of Figures

List of Figures

1.1 Visualization of space debris around Low Earth Orbit (LEO) [7] 3

2.1 Comparison between exact solution and approximation so-
lution for quaternion distance. The x-axis shows the actual
difference between the two orientations and the y-axis shows
the calculated distance. 11

3.1 Thruster locations of the robot. 19
3.2 An n-agent tethered system. 21
3.3 Thruster configuration of the robot. 26
3.4 Equilibrium point of the n-agents tethered system. The

equilibrium point on the right is used in this work. 27
3.5 Equilibrium point of the planar tethered system. 28

4.1 Directional constraints on the control input. 31
4.2 A single robot with virtual tension force. 33
4.3 PWM signal for different control inputs. 35

5.1 Overview of the methods. 36
5.2 Numerical simulator developed in Python. 37
5.3 The whole trajectory of the load transportation. 40
5.4 Three dimensional experiments. 41
5.5 Results from point tracking experiments. 45
5.6 Trajectories for the experiments. 47
5.7 We assume the whole system to be a single rigid body, then

states of the robots can be computed directly from states of the
load. 48

5.8 Results from the multiple points tracking experiments. 48
5.9 Physical simulator in Gazebo displays prismatic and revolute

joints to imitate cable behaviour. 50

List of Figures | vii

5.10 The controller framework shows the communication between
controllers and robots. First, the MPC controller sends body
force and torque signals to the PWM controller. Next, the
PWM controller converts the signal and sends the proper
open sequence to thrusters. The states of the robots are then
measured and sent back to the MPC controller. 51

5.11 States of the load during the motion in the centralized scheme. 52
5.12 States of the robots during the motion in the centralized scheme. 53
5.13 States of the load during the motion in the decentralized scheme. 53
5.14 States of the robots during the motion in the decentralized

scheme. 54
5.15 Computation time of centralized and decentralized controller

during motion. 54
5.16 Laboratory setup in Space Robotics Lab. 55

6.1 Air carriage platforms for the experiments. 57
6.2 Proto version. 58
6.3 Alpha version. 59
6.4 Schematic of the pneumatic system shows important compo-

nents. 60
6.5 Schematic of the new pneumatic system includes additional

high-pressure regulators. 61
6.6 Air bearing at the base of the robot. 62
6.7 Thruster module consists of two solenoid valves, two nozzles

and one buck-boost converter. 63
6.8 Thruster configuration of the robot on the actuation layer. . . . 63
6.9 Electronics system of the platform. 64

viii | List of acronyms and abbreviations

List of Tables

5.1 Parameters of the system . 39
5.2 Parameters of the controller 40
5.3 Parameters of the controller 42
5.4 Parameters of the system . 43
5.5 Results from point tracking experiments. 44

6.1 Robot Specification . 57
6.2 Pneumatic components . 61

List of acronyms and abbreviations

3DOF three-degree-of-freedom

ADR Active Debris Removal

BVP Boundary Value Problem

CFHOC Constrained Finite Horizon Optimal Control

DCM Direction Cosine Matrix

ISS International Space Station

LEO Low Earth Orbit
LQR Linear-Quadratic Regulator

MPC Model Predictive Control

List of acronyms and abbreviations | 1

PID Proportional–Integral–Derivative
PWM Pulse Width Modulation

RK4 explicit Runge-Kutta 4th Order
ROS 2 Robot Operating System

SMC Sliding-Mode Controller

2 | Introduction

Chapter 1

Introduction

1.1 Overview

"Imagination is infinite but space has its limits"

After more than 60 years of space missions, men have left a lot of space
debris in our Low Earth Orbit (LEO) as shown in Fig. 1.1. In the near
future, the number of space debris will continue to increase dramatically [1, 2].
As a result, there will be a higher chance of spacecraft and debris colliding.
This risk can eventually cause the phenomena called Kessler syndrome [3].
This syndrome is a chain reaction of collisions between space debris and
spacecrafts, which will generate more space debris and eventually make the
space environment unusable. Therefore, it is an unavoidable mission to
capture and remove space debris. There are several proposed methods for
Active Debris Removal (ADR), such as using a net, harpoon, or robotic
arm, and also contactless methods [4, 5]. Although contactless methods are
promising, they are currently still in the early stage of development. Therefore,
in this thesis, we will focus on contact-based methods, specifically the tethered
method. With the contact method, it is more challenging to control the robot
since it has to directly contact the space debris, which increases the likelihood
of accidentally colliding and creating more debris fragments. In addition, the
space debris is usually in an unknown state, which makes it more difficult
to predict the states and then use them to control the robot. Another main
challenge in controlling the robot is to manoeuvre the robot in a microgravity
environment, where there is no air and residual gravity can be ignored [6]. In
this specific environment, robots can only move by ejecting small masses in
the opposite direction, through their thrusters, to the environment. Therefore,

Introduction | 3

the resources of the robot are limited and need to be optimized and allocated
properly.

Figure 1.1: Visualization of space debris around LEO [7]

Due to the high cost of conducting experiments in space, it is necessary
to test and verify the controller in ground-based testbeds before deployment.
Therefore, a high-fidelity simulator and testbeds that can replicate the
microgravity environment have been developed. The main challenge of
imitating this environment comes from the presence of gravity and friction.
Therefore, the testbed needs to be designed to eliminate these effects. Air-
bearing-based designs are frequently utilized in floating platforms to minimize
the friction between the platform on the substantially flat and smooth surface
[8, 9]. These air bearings generate an air cushion by uniformly releasing the
compressed air and levitating the platform. As a result, this floating platform
can provide space-like dynamics in a planar motion.

Furthermore, the usage of multiple robots demonstrates the potential
advantage of working together to transport a large payload due to the limited
power of each robot [10, 11]. In this work, we focus primarily on achieving
a collaborative task of load transportation. However, with a higher number
of robots, the more complex the control problem is. Therefore, we need
to develop a suitable controller to solve this problem. Additionally, cables
are used to connect the load and the robot due to a number of advantages;
first, compared to a rigid link, cables can be stored inside the robot’s tight
space and subsequently extended as required. Second, cables are significantly
lightweight and flexible, which is suitable for the limited load capacity in the

4 | Introduction

space mission [12, 13]. However, the cable is not rigid, which makes the
control problem more challenging.

1.2 Related work

Collaborative transportation is a challenging problem in the field of robotics
[14, 15, 16, 17]. In this section, we will review the related work in the field of
collaborative transportation and multi-agent control.

To achieve ADR and load transportation in space, many works have been
presented. Philipp Behruzi et al [18] displays the tethered transportation on
the slosh object on International Space Station (ISS). However, the controller
is preprogrammed to actuate two active robots in order to move a passive
load and the functional controller design has not yet been presented. Another
research from H.T. Linskens et al. [19] proposes a simple Sliding-Mode
Controller (SMC) method for the guidance and control system of the tethered
system. The results demonstrate that SMC performs better than the classic
Linear-Quadratic Regulator (LQR) in terms of propellant consumption. This
work also shows the analysis of the tether model using lumped-mass model
discretizing. However, the controller in this work is designed only for one
robot. Also, the tether used in this work is very long (200 m), but we use only
short cables in our work. Thus, we can ignore the model and vibration of the
cable. Although there is still not much work on collaborative transportation
in the space environment, there are several works from other applications,
including ground, aerial, and legged robots, which can be applied to our
system.

In aerial robotics system, the work from Roberto C. Sundin et al.
[10] proposes predictive control frameworks, including centralized and
decentralized controllers and analytical solutions for the equilibrium point for
the load transportation of the drone systems. The experiment demonstrates
the advantages of the centralized scheme in better tracking error but it needs
more computational time compared to the decentralized one. Although this
system has many similarities to our system, we can not directly use the method
because the absence of gravity in the microgravity environment induces
infinite equilibrium points. Another research from Taeyoung Lee [20] uses
Proportional–Integral–Derivative (PID) control to achieve the transportation
task; however, with PID, we cannot directly include desired constraints such
as input limit in the controller.

For the legged robotics system, Flavio De Vincenti et al. [21] propose a
centralized Model Predictive Control (MPC) controller for the locomotion and

Introduction | 5

manipulation task. The centralized controller is designed to calculate the states
of each robot and send them to the local whole-body controller. Each robot
and the payload is assumed to be a single rigid body, which can reduce the
complexity of the problem. However, the controller paradigm is designed for
direct contact between the robot and the payload. Therefore, it is not suitable
for the tethered system. Another work from Jeeseop Kim et al. [22] proposes
a centralized and distributed controller for the load transportation task. The
centralized controller is designed to solve the whole interconnected system
as a single optimal control problem and then calculate the control input for
each robot. The distributed controller is designed to use information sharing
between two robots to reduce the size of the problem. However, the controller
is designed for the rigid link between the robot and the payload, which needs
to be modified for the tethered system.

In this thesis, we will focus primarily on the problem of collaborative load
transportation. To achieve this task, we need to first model the dynamics
and interaction forces of the system. We propose a generalized framework to
calculate the interaction force in the cable between the robot and load based on
the number of robots. Then, a MPC controller, which is an optimization-based
controller, is developed to solve the control problem. The main advantage of
this controller is that it allows the controller to achieve the optimal control
input within given constraints, which are important for space applications.
Two simulators, a numerical simulator in Python and a physical simulator
in Gazebo, are developed to evaluate the performance of the controller. The
former simulator is used to verify the model and test the controller in an ideal
environment. The latter is used to assess how well the controller performs
in a more realistic setting, where the length of the cable can change and a
communication protocol is included. The outcome of this project can be
extended to the application for debris removal in space and also be applied
to distributed control in multi-agent schemes.

The contributions of this project can be summarised as follows:

• We propose a generalized framework to model and calculate the
interaction force for the n-agent tethered system.

• We propose a centralized and decentralized nonlinear MPC controller
to achieve a load transportation task.

• We demonstrate the comparative study of the performance of the two
controllers.

6 | Introduction

1.3 Structure of the thesis

The thesis is structured as follows: the theoretical concepts of attitude
descriptions and MPC are presented in Chapter 2. In Chapter 3, the kinematic
and dynamic models of the system are derived and explained. Control designs
for both centralized and decentralized schemes are presented in Chapter 4.
Chapter 5 shows the experimental setup and results. Next, in Chapter 6, the
hardware description of the air carriages that will be used in future experiments
is explained in detail. Chapter 7 summarizes our main results and outlines
future research directions.

Background | 7

Chapter 2

Background

2.1 Quaternion

There are several ways to represent the orientation of the spacecraft or robot,
such as Euler angles, rotation matrix, and quaternion. In this section, we will
discuss a quaternion representation. The main advantage of using quaternion
is that it does not suffer from the singularity and gimbal lock problem [23],
which is the case for Euler angles. The quaternion is a four-element vector
that is defined in scalar-vector quaternion convention as follows [24]:

q = q1î+ q2ĵ + q3k̂ + q4 (2.1)

q =
[
q1 q2 q3 q4

]T (2.2)

where q1, q2, q3 are the vector part, and q4 is the scalar part. Note that vectors
are represented by small, bold letters. The hat symbol denotes the unit vector.
Matrices are denoted by bold, capital letters. The quaternion can also be
represented as an angle of rotation and axis of rotation as follows:

q =
[
asin(α/2) cos(α/2)

]T (2.3)

where a is a normalized unit vector representing the axis of rotation and α is
the angle of rotation. Also, a unit quaternion satisfies the following property:

||q|| = 1 (2.4)

In order to represent the attitude of the robot in the 3D space, one can convert
a quaternion to a rotation matrix or Direction Cosine Matrix (DCM) Λ(q) as

8 | Background

follows [24]:

Λ(q) = (q24 − qT
1:3q1:3)I3 − 2q4q

×
3 + 2q1:3q

T
1:3 (2.5)

=

q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

(2.6)

where I3 is a 3 × 3 identity matrix. The superscript × denotes a skew-
symmetric of the vector, which is defined as follows:

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.7)

Additionally, quaternion can also be converted from the Euler angles in a 3-2-1
sequence as follows:

q1
q2
q3
q4

 =

sin(ϕ/2)cos(θ/2)cos(ψ/2)− cos(ϕ/2)sin(θ/2)sin(ψ/2)

cos(ϕ/2)sin(θ/2)cos(ψ/2) + sin(ϕ/2)cos(θ/2)sin(ψ/2)

cos(ϕ/2)cos(θ/2)sin(ψ/2)− sin(ϕ/2)sin(θ/2)cos(ψ/2)

cos(ϕ/2)cos(θ/2)cos(ψ/2) + sin(ϕ/2)sin(θ/2)sin(ψ/2)

(2.8)

where ϕ, θ, ψ are roll, pitch, and yaw angles, respectively. The conversion
from the quaternion to the Euler angle is not unique. Therefore, one can use
the following equation to convert the quaternion to the Euler angles:ϕθ

ψ

 =

 atan2(2(q4q1 + q2q3), 1− 2(q21 + q22))

−π/2 + 2atan2(
√
1 + 2(q4q2 − q1q3),

√
1− 2(q4q2 − q1q3))

atan2(2(q4q3 + q1q2), 1− 2(q22 + q23))

(2.9)

2.1.1 Quaternion Algebra

In this section, we will discuss two operations of quaternion: addition and
multiplication [25]. The addition of two quaternions is performed element-
wise. It can be done by adding each element of the scalar and vector parts as

Background | 9

follows:

p+ q = (p1 + q1)î+ (p2 + q2)ĵ + (p3 + q3)k̂ + (p4 + q4) (2.10)

This operation is commutative. Also, it can represent a composite rotation
only for a very small angle. Thus, it is more common to use multiplication
to represent the composite rotation. The multiplication of two quaternions
follows the Hamilton product as follows:

p⊗ q = p4q4 − p1:3 · q1:3 + p4q1:3 + q4p1:3 + p1:3 × q1:3 (2.11)

The multiplication of two quaternions can also be represented in a matrix form
as follows:

p⊗ q =

−p1 −p2 −p3 p4
p4 −p3 p2 p1
p3 p4 −p1 p2
−p2 p1 p4 p3

q1
q2
q3
q4

 (2.12)

2.1.2 Quaternion Differentiation

To measure the change in the orientation of the robot at any time step q(t), one
can use the quaternion differentiation [25]. To illustrate, we consider the robot
is rotating with angular velocity ω at time t. Let ∆q be the rotation change
during time∆t in a local frame. The new orientation after rotation is q(t+∆t)

at time t+∆t. Then, ∆θ = ||ω||∆t is the rotation angle around rotation axis
ω̂ = ω/||ω||. The orientation change can be described as follows:

∆q = ω̂ sin
∆θ

2
+ cos

∆θ

2
(2.13)

= ω̂ sin
||ω||∆t

2
+ cos

||ω||∆t
2

(2.14)

Then, we can determine the new orientation as a composite rotation as follows:

q(t+∆t) = ∆q ⊗ q(t) (2.15)

10 | Background

We can derive the difference as follows:

q(t+∆t)− q(t) =

(
ω̂ sin

||ω||∆t
2

+ cos
||ω||∆t

2

)
⊗ q(t)− q(t) (2.16)

= sin
||ω||∆t

2
ω̂ ⊗ q(t) + cos

||ω||∆t
2

⊗ q(t)− q(t)

(2.17)

= sin
||ω||∆t

2
ω̂ ⊗ q(t)− 2 sin2 ||ω||∆t

4
q(t) (2.18)

Then, the derivation of the quaternion q̇ can be derived as follows:

q̇ = lim
∆t→0

q(t+∆t)− q(t)

∆t
(2.19)

= lim
∆t→0

(
sin(||ω||∆t/2)

∆t
ω̂ ⊗ q(t)− 2 sin2(||ω||∆t/4)

∆t
q(t)

)
(2.20)

=

(
d

dt
sin

(
||ω||t
2

)∣∣∣∣
t=0

)
ω̂ ⊗ q(t) (2.21)

=
||ω||
2

ω̂ ⊗ q(t) (2.22)

=
1

2
ω ⊗ q(t) (2.23)

One can define omega operator Ω(ω) as:

Ω(ω) ≡
[
−ω× ω

−ωT 0

]
(2.24)

=

0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (2.25)

Then, an equivalent matrix expression for the derivative can be represented as:

q̇ =
1

2
Ω(ω)q (2.26)

2.1.3 Quaternion Distance

In order to measure the difference between two orientations, one can use the
quaternion distance, which defines the closest angle between two orientations.

Background | 11

To measure this distance d(p, q), one can use the following equation [26]:

d(p, q) = θ = cos−1(2⟨p, q⟩2 − 1) (2.27)

where ⟨p, q⟩ is an inner product between two quaternions, which can be
defined as follows:

⟨p, q⟩ = p1q1 + p2q2 + p3q3 + p4q4 (2.28)

Eq. 2.27 can give the distance between two quaternions in a range between
[0, π]; however, it is numerically expensive from the trigonometric function.
Therefore, one can use the following equation to compute the distance between
two quaternions:

d(p, q) = 1− ⟨p, q⟩2 (2.29)

Eq. 2.29 can provide the value between [0, 1] which can also be scaled by π
to give the value between [0, π]. This approximated distance can represent a
good approximation of Eq. 2.27 as shown in Fig. 2.1.

Figure 2.1: Comparison between exact solution and approximation solution
for quaternion distance. The x-axis shows the actual difference between the
two orientations and the y-axis shows the calculated distance.

12 | Background

2.2 Model Predictive Control

Model Predictive Control is an optimization-based controller that solves the
trajectory optimization problem at each time step in a receding horizon
fashion. In each time step, the predictive controller solves the open loop
Constrained Finite Horizon Optimal Control (CFHOC) and applies only the
first control input to the system. The feedback is introduced to the controller by
measuring the current states of the system and using it as the initial condition
of the next optimization problem. The optimization problem is then solved
again in the next time step. This process is repeated until the system reaches
the desired point or trajectory.

2.2.1 Constrained Finite Horizon Optimal Control

Consider the following discrete-time nonlinear system:

xk+1 = f(xk, uk) (2.30)

where xk ∈ Rn is the state of the system at time step k and uk ∈ Rm is the
control input at time step k. f(·) is the dynamic of the system. To control this
system, in an ideal case, one would like to solve the infinite horizon optimal
control problem, which can be formulated as follows:

J∗
∞ = min

u(·)

∞∑
k=0

l(xk, uk)

subject to xk+1 = f(xk, uk), k = 0, . . . ,∞
xk ∈ X , k = 0, . . . ,∞
uk ∈ U , k = 0, . . . ,∞
x0 = x(0)

(2.31)

Where l(·) is a stage or running cost and x(·) indicates a prediction state and
x(·) indicates a measured state. X and U are state and input constraints,
respectively. With the limitation of computation, we cannot directly solve
this problem due to the infinite number of optimization variables. In order to
handle this issue, one can truncate the infinite horizon optimal control problem
into the CFHOC problem. One can introduce a terminal set xN ∈ Xf , which
is invariant, to ensure that we can always find the feasible control input to keep
the system within the set. The infinite cost can be approximated to the terminal

Background | 13

cost lf (xN). Thus CFHOC can be formulated as follows:

J∗
N = min

u(·)

N−1∑
k=0

l(xi, ui) + lf(xN)

subject to xk+1 = f(xk, uk), k = 0, . . . , N − 1

xk ∈ X , k = 0, . . . , N − 1

uk ∈ U , k = 0, . . . , N − 1

xN ∈ X f

x0 = x(0)

(2.32)

The goal of this predictive controller is to find the optimal control input
sequence u∗ = {u∗0, u∗1, ..., u∗N−1} that minimizes the cost function J .

2.2.2 Receding Horizon

From solving CFHOC, we can obtain the optimal control input sequence.
However, in practice, if we apply the whole sequence to the system, the
system may not be able to track the desired point or trajectory. This is due
to the fact that the model of the system is not perfect and also the effect of
external disturbance. Therefore, the controller needs to be able to handle the
uncertainty of the system. In order to do so, the feedback is incorporated into
this open-loop controller and translated to the closed-loop controller. This
can be done by solving the optimization problem in an iterative manner or a
receding horizon fashion. In other words, in each time step, the controller
will solve CFHOC problem to get the optimal solution (i.e., control input
sequence), then apply only the first input to the system. The system is then
evolved for one step, the current states are measured and used as an initial
condition to recompute the optimization problem again for the next time step
(i.e., x0 = x(k)). The system goes through this procedure again and again
until it achieves the target point or trajectory. Furthermore, due to the effect
of the horizon, a longer horizon will give a more optimal solution, however, it
needs more computation power. On the other hand, a short-horizon controller
experiences a short-sighted problem, resulting in probably not an optimal
solution and also an unstable system. Using the proper horizon length plays a
crucial role in MPC controller. As a result, we can then formulate the optimal

14 | Background

control problem in each time step as follows:

J∗
N = min

u(·)

N−1∑
k=0

l(xi, ui) + lf (xN)

subject to xk+1 = f(xk, uk), k = 0, . . . , N − 1

xk ∈ X , k = 0, . . . , N − 1

uk ∈ U , k = 0, . . . , N − 1

xN ∈ Xf

x0 = x(k)

(2.33)

2.2.3 Direct Single and Direct Multiple Shooting

To solve an optimization problem effectively, one needs to consider the way
to construct the problem. There are several factors that play crucial roles in
the computation time. One is a shooting method. There are two popular
shooting methods, which are single shooting and multiple shooting [27].
These methods are numerical techniques used to solve optimal control and
trajectory optimization problems while satisfying certain constraints.

2.2.3.1 Single Shooting Method

Single shooting is a simple method to solve the optimization problem, which
is formulated as a Boundary Value Problem (BVP). The main idea is to find
the solution for the entire trajectory by integrating the differential equations
forward in time. Next, the obtained trajectory is examined to see if the given
boundary conditions are satisfied. Therefore, one can formulate the state of
the system in each time step as follows:

x1 := f(x0, u0)

x2 := f(x1, u1)

...
xN−1 := f(xN−2, uN−2)

xN := f(xN−1, uN−1)

(2.34)

where x0 is the initial state of the system and xN is the final state of the system,
which can also be formulated as a function of x0 as follows:

xN := F(x0, u0, u1, . . . , uN−1) (2.35)

Background | 15

where F is the function that represents the whole trajectory of the system.
From this structure, despite being straightforward to use, the single-shooting
approach can experience convergence problems when the optimization
problem is very nonlinear.

2.2.3.2 Multiple Shooting Method

In the multiple shooting method, on the other hand, the trajectory is divided
into smaller segments. The main idea is to solve the smaller optimization
problem for each segment separately. The solution of each segment is
then enforced to be continuous with the solution of the adjacent segments.
Therefore, one can formulate the state of the system in each segment as follows:

xk = f(sk, uk), k = 0, . . . , N − 1 (2.36)

where sk is an artificial initial value and xk is a trajectory piece. Thus, each
trajectory piece is only a function of the local artificial initial value sk and
control input uk. Then, one can connect each piece with continuity as follows:

xk = sk+1, k = 0, . . . , N − 1 (2.37)

As a result, MPC with multiple shooting method can be formulated by
incorporating the state of the system in each segment as the optimization
variable as follows:

J∗
N = min

u(·),x(·)

N−1∑
k=0

l(xi, ui) + lf (xN)

subject to xk+1 = f(xk, uk), k = 0, . . . , N − 1

xk ∈ X , k = 0, . . . , N − 1

uk ∈ U , k = 0, . . . , N − 1

xN ∈ Xf

x0 = x(k)

(2.38)

Although the multiple shooting method creates a larger optimization problem,
due to more decision variables, this method displays better convergence
properties than single shooting, especially when the problem is highly
nonlinear [28]. Also, this method will give both optimal control input
sequence u∗ = {u∗0, u∗1, ..., u∗N−1} and optimal state sequence x∗ =

{x∗0, x∗1, ..., x∗N} that minimizes the cost function J . Therefore, we will use

16 | Background

this method to formulate the MPC controller in the following Chapters.

Systems Dynamics | 17

Chapter 3

Systems Dynamics

To understand the behaviour of the system, one needs to first model the system.
The evolution of the dynamics system can be modelled using differential
equations. Also, it is necessary to derive a precise model for designing
a model-based controller. This chapter will describe the derivation of the
equation of motion of our tethered system. First, the dynamics of a single free
flyer will be explored. Then, the kinematics, dynamics and force interaction
of the multi-agent system will be discussed. Finally, the equation of motion of
the n-agent tethered system will be derived.

3.1 Modelling of a single free flyer

In order to get the dynamics of multiple robots, one first needs to understand
the dynamics of a single free flyer. A single free-flying robot can be modelled
as a thruster-controlled spacecraft [29]. With this type of spacecraft, each
thruster is a one-directional thruster, meaning that it cannot produce a negative
thrust. In order to generate thrust in both directions, we pair two thrusters
together in the opposite direction. Also, the robot needs to have at least six
pairs of thrusters to be able to move in all directions in three-dimensional
space. The thrusters are placed in a specific way that they can produce
thrust, which will exert both force and torque on the robot in all directions
as illustrated in Fig. 3.1. The arrangement of the thrusters can be described
using matrix L ∈ R3×6 as follows:

L =
[
l1 l2 · · · l6

]T (3.1)

18 | Systems Dynamics

where li ∈ R3 denotes the lever arm of ith thruster pairs from the center of
mass of the robot in the body frame {B}. Thus, the thrust directions are given
by a matrix D ∈ R3×6 as follows:

D =
[
d̂1 d̂2 · · · d̂6

]
(3.2)

where d̂i ∈ R3 is a unit vector defining the direction of the ith thruster. We
can describe the amount of force provided by each thruster pair with a vector
u ∈ R6

u =
[
u1 u2 · · · u6

]T (3.3)

Thus, the body force F ∈ R3 and torque τ ∈ R3 in body frame {B} of the
robot are calculated as following equations:

F = Du =

Fx

Fy

Fz

 =

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

u1
u2
...
u6

 (3.4)

τ = Lu =

τxτy
τz

 = larm

0 0 0 0 1 −1

1 −1 0 0 0 0

0 0 −1 1 0 0

u1
u2
...
u6

 (3.5)

Systems Dynamics | 19

Figure 3.1: Thruster locations of the robot.

The model of the single robot is then derived using the Newton-Euler
method. This method is used to derive the equation of motion of a rigid
body by separating translation (Newton), and rotation (Euler). By using the
conversion of the linear momentum of the robot and the summation of all the
forces acting on the robot, the change in position and velocity of the robot can
be computed. Similarly, by considering all the torques exerted on the robot,
one can calculate the change in orientation and angular velocity. The equation
of motion of a single robot is given by:

ṗ = v (3.6)
v̇ = m−1(Λ(q)TF) (3.7)

q̇ =
1

2
(Ω(ω))q (3.8)

ω̇ = J−1(−ω×Jω + τ) (3.9)

where m is mass of the robot and Λ(q)T is the DCM that transforms the
thruster force (F) from the body frame {B} to the inertial frame {E}. DCM
Λ(q) can be calculated from the current attitude of the robot, which is
described by a quaternion from Eq. 2.6. Ω(ω) can be derived from quaternion
kinematics from Eq. 2.26 as a function of robot angular velocity.

20 | Systems Dynamics

3.2 Modelling of an n-agent tethered system

In this section, we will connect multiple robot models together with the load
to form a tethered system. The tethered system can be modelled as a multi-
body system. A cable will be modelled similarly to a rigid rod. This cable
is connected to the robot and the load with a ball-and-socket joint. Thus, this
model can also be used for the system connected together with a massless rod.
For our system, we will constrain the system to always have the tension force in
the cable using the controller. This will be explained in Chapter 4. The model
of the tethered system is shown in Fig. 3.2. The dynamics of the system can
be described using the Newton-Euler method. The equation of motion of the
system is given by:

ṗi = vi i = 1, 2, . . . , n (3.10)
v̇i = m−1

i (ΛT
i (qi)Fi − Ti) i = 1, 2, . . . , n (3.11)

q̇i =
1

2
(Ωi(ωi))qi i = 1, 2, . . . , n (3.12)

ω̇i = J−1
i (−ω×

i Jiωi + τi − ri × (Λi(qi)Ti)) i = 1, 2, . . . , n (3.13)
ṗL = vL (3.14)

v̇L = m−1
L

n∑
i=1

Ti (3.15)

q̇L =
1

2
(ΩL(ωL))qL (3.16)

ω̇L = J−1
L (−ω×

LJLωL +
n∑

i=1

Ri × (ΛL(qL)Ti)) (3.17)

wherepi,vi,pL,vL,Ti are defined in inertial frame {E}, whileJi,ωi, τi,Fi, ri
are defined in body frame {Bi} of the robot ith. JL,ωL,Ri are in the load
frame {BL}. Where Λi(qi),ΛL(qL) are DCM that performs the coordinate
transformation from the inertial frame {E} into the body frame {Bi} and load
frame {BL}, respectively. Also, ΛT

(·)(q(·)) transform the coordinate from the
body or load frame back to the inertial frame. n is a number of robots.

Systems Dynamics | 21

Figure 3.2: An n-agent tethered system.

In order the solve the equation of motion of the system, we need to
formulate all interaction forces (i.e., cable tension, Ti) in terms of states and
inputs. By considering the holonomic constraints in this system, the length of
all cables is always constant. Thus, we get the following holonomic constraints
ψi equations:

ψi = l2i = ||p′
i − si||2 i = 1, 2, . . . , n

(3.18)
ψ̇i = 0 = (p′

i − si) · (v′
i − vsi) i = 1, 2, . . . , n

(3.19)
ψ̈i = 0 = (p′

i − si) · (a′
i − asi) + (v′

i − vsi) · (v′
i − vsi) i = 1, 2, . . . , n

(3.20)

In the following, for brevity, we will show the detailed derivation only for robot
1 and also introduce these shorthands:

Λ(·) := Λ(·)(q(·)) (·) = 1, 2, . . . , n, L (3.21)
γ(·) := −ω×

(·)J(·)ω(·) (·) = 1, 2, . . . , n, L (3.22)

|| · ||2i := (v′
i − vsi) · (v′

i − vsi) i = 1, 2, . . . , n (3.23)

22 | Systems Dynamics

Also, we will introduce a unit directional vector of the tension that can be
computed using the following equations:

n̂i =
p′
i − si
li

i = 1, 2, . . . , n (3.24)

Ti = Tin̂i i = 1, 2, . . . , n (3.25)

From the kinematics of the system, we can compute the position, velocity and
acceleration of each specific point in inertial frame {E} as follows:

p′
1 = p1 +ΛT

1 r1 (3.26)
v′
1 = v1 +ΛT

1 (ω1 × r1)

= v1 +ΛT
1 (ω

×
1 r1) (3.27)

a′
1 = a1 +ΛT

1 (ω̇1 × r1 + ω1 × (ω1 × r1))

= a1 +ΛT
1 (−r1 × ω̇1 + ω1 × (ω1 × r1))

= a1 +ΛT
1 (−r×

1 ω̇1 + ω×
1 (ω

×
1 r1)) (3.28)

s1 = pL +ΛT
LR1 (3.29)

vs1 = vL +ΛT
L(ωL ×R1)

= vL +ΛT
L(ω

×
LR1) (3.30)

as1 = aL +ΛT
L(ω̇L ×R1 + ωL × (ωL ×R1))

= aL +ΛT
L(−R1 × ω̇L + ωL × (ωL ×R1))

= aL +ΛT
L(−R×

1 ω̇L + ω×
L (ω

×
LR1)) (3.31)

From holonomic constraints in Eq. 3.20, states of the systemp′
1,v

′
1,a

′
1, s1,vs1 ,as1

can be substituted with above kinematics and dynamics equations to get
followings:

Systems Dynamics | 23

0 =

a1︷ ︸︸ ︷
ΛT

1F1 − T1

m1

+ΛT
1

−r×
1

 ω̇1︷ ︸︸ ︷
J−1
1 (γ1 + τ1 − r×

1 Λ1T1)

+ (ω×
1)

2r1

−

aL︷ ︸︸ ︷∑n
i=1 Ti

mL

+ΛT
L

−R×
1

ω̇L︷ ︸︸ ︷

J−1
L

(
γL +

n∑
i=1

Ri × (ΛLTi)

)+ (ω×
L)

2R1

·
(
p′
1 − s1
l1

)
+

|| · ||21
l1

0 =

[
ΛT

1

(
F1

m1

− r×
1 J

−1
1 (γ1 + τ1) + (ω×

1)
2r1

)
−
(

I3
m1

−ΛT
1 r

×
1 J

−1
1 r×

1 Λ1

)
T1

−
(

I3
mL

−ΛT
LR

×
1 J

−1
L R×

1 ΛL

)
T1 −

n∑
i=2

(
I3
mL

−ΛT
LR

×
1 J

−1
L R×

i ΛL

)
Ti

−ΛT
L

(
−R×

1 J
−1
L γL + (ω×

L)
2R1

)]
· n̂1 +

|| · ||21
l1

0 =

[
ΛT

1

(
F1

m1

− r×
1 J

−1
1 (γ1 + τ1) + (ω×

1)
2r1

)
−ΛT

L

(
−R×

1 J
−1
L γL + (ω×

L)
2R1

)
︸ ︷︷ ︸

µ1

−
((

m1 +mL

m1mL

)
I3 −ΛT

1 r
×
1 J

−1
1 r×

1 Λ1 −ΛT
LR

×
1 J

−1
L R×

1 ΛL

)
︸ ︷︷ ︸

ϕ1

T1

−
n∑

i=2

(
I3
mL

−ΛT
LR

×
1 J

−1
L R×

2 ΛL

)
︸ ︷︷ ︸

σ1,i

Ti

]
· n̂1 +

|| · ||21
l1

0 =

[
µ1 − ϕ1T1 −

n∑
i=2

σ1,iTi

]
· n̂1 +

|| · ||21
l1

0 =µ1 · n̂1 +
|| · ||21
l1︸ ︷︷ ︸

ζ1

−
n∑

i=2

σ1,iTi · n̂1 − ϕ1T1 · n̂1

0 =ζ1 −
n∑

i=2

σ1,in̂i · n̂1︸ ︷︷ ︸
α1,i

Ti − ϕ1n̂1 · n̂1︸ ︷︷ ︸
α1,1

T1

0 =ζ1 −
n∑

i=2

α1,iTi − α1,1T1

24 | Systems Dynamics

In a similar procedure, one can compute the internal force of other robots
in the system. As a result, we can formulate all internal forces in the system
and stack them together in a single matrix form as follows:

α1,1 α1,2 · · · α1,n−1 α1,n

α2,1 α2,2 · · · α2,n−1 α2,n
...

αn−1,1 αn−1,2 · · · αn−1,n−1 αn−1,n

αn,1 αn,2 · · · α1,n−1 αn,n

T1
T2
...

Tn−1

Tn

 =

ζ1
ζ2
...

ζn−1

ζn

 (3.32)

where each component is defined as follows:

ϕi =

((
mi +mL

mimL

)
I3 −ΛT

i r
×
i J

−1
i r×

i Λi −ΛT
LR

×
i J

−1
L R×

i ΛL

)
(3.33)

µi = ΛT
i

(
Fi

mi

− r×
i J

−1
i (γi + τi) + (ω×

i)
2ri

)
−ΛT

L

(
−R×

i J
−1
L γL + (ω×

L)
2Ri

)
(3.34)

σi,j =

(
I3
mL

−ΛT
LR

×
i J

−1
L R×

j ΛL

)
(3.35)

αi,i = ϕin̂i · n̂i (3.36)
αi,j = σi,jn̂j · n̂i (3.37)

ζi = µi · n̂i +
|| · ||2i
li

(3.38)

As a result, from Eq. 3.32, the tension force in each cable of each robot can
be calculated by solving linear equations and formulating it in terms of states
and inputs.

3.3 Modelling of a tethered system in planar
coordinates

In planar coordinates, a robot is constrained to be able to move only in the x, y
direction and rotate around the z axis, which can be represented by rotation
angle θ. Thus, the dynamics of the system can be simplified. First, we can
represent the rotation around the z-axis by only two quaternion components:
q3 and q4 as follows:

q =
[
0 0 q3 q4

]T
=
[
0 0 sin(θ/2) cos(θ/2)

]T (3.39)

Systems Dynamics | 25

Next, DCM Λ(θ) can be simplified to the following form:

Λ(θ) =

−sin2(θ/2) + cos2(θ/2) 2sin(θ/2)cos(θ/2) 0

−2sin(θ/2)cos(θ/2) −sin2(θ/2) + cos2(θ/2) 0

0 0 1

 (3.40)

=

 cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (3.41)

One can observe that the simplified DCM is similar to a standard rotation
matrix around the z-axis. Additionally, we can get simpler forms in angular
components as follows:

ω× =

[
0 −ω
ω 0

]
(3.42)

γ(·) := −ω×
(·)J(·)ω(·) = 0 (·) = 1, 2, . . . , L (3.43)

Also, the thruster body force F and torque τ in the robot are also simplified
as follows:

F =
[
Fx Fy 0

]T (3.44)

τ =
[
0 0 τz

]T (3.45)

For planar coordinates, the system requires at least two robots to manoeuvre
the load in all directions. In our system, there are two robots equipped with
eight thrusters on the robot with the arrangement shown in Fig. 3.3. Thus,
body forces and torque can be calculated as follows:

F = Du =

[
Fx

Fy

]
=

[
1 1 0 0

0 0 1 1

]
u1
u2
u3
u4

 (3.46)

τ = Lu =
[
τz
]
= larm

[
1 −1 1 −1

]
u1
u2
u3
u4

 (3.47)

26 | Systems Dynamics

Figure 3.3: Thruster configuration of the robot.

As a result, the equation of motion of the system can be simplified as
follows:

ṗi = vi i = 1, 2 (3.48)
v̇i = m−1

i (ΛT
i (θi)Fi − Ti) i = 1, 2 (3.49)

θ̇i = ωi i = 1, 2 (3.50)
ω̇i = J−1

i (τi − ri × (Λi(θi)Ti)) i = 1, 2 (3.51)
ṗL = vL (3.52)
v̇L = m−1

L (T1 + T2) (3.53)
θ̇L = ωL (3.54)

ω̇L = J−1
L

[
2∑

i=1

Ri × (ΛL(θL)Ti)

]
(3.55)

3.4 Equilibrium of the system

3.4.1 Equilibrium of the n-agent tethered system

The tethered system with three to n robots has more than one equilibrium
point due to redundancy as shown in Fig. 3.4. In this work, we propose the
generalized method to find one specific equilibrium point which is the center
of geometry created by connecting all the anchor points. At this point, we
assume all robot attitudes to be the same as the load. Thus, we can find the

Systems Dynamics | 27

center of equilibrium c from the geometry as follows:

c =

∑n
i=1 si
n

(3.56)

Next, the unit direction vector from the center of equilibrium and the poses of
each transporter can be derived as follows:

b̂i =
si − c

||si − c||
i = 1, 2, . . . , n (3.57)

pi = si + (li + ||ri||)b̂i i = 1, 2, . . . , n (3.58)

Figure 3.4: Equilibrium point of the n-agents tethered system. The equilibrium
point on the right is used in this work.

3.4.2 Equilibrium of the planar tethered system

From the nature of the system, we can analytically derive the states of the two
transporters from only the states of the load at an equilibrium point. At this
specific point, all derivatives of the states in Eq. 3.48 - Eq. 3.55 become zero
(i.e., ẋ = 0) and the summation of force and torque at the load is zero (i.e.,∑

F = 0 and
∑

τ = 0). Also, it can imply that the tension force T1 and
T2 have to be on the same line of action but in the opposite direction (i.e.,
T1 = −T2). Therefore, we define a unit directional vector from the anchor
point 2 s2 to anchor point 1 s1 as shown in Fig. 3.5 as followings:

b̂ =
s1 − s2

||s1 − s2||
= n̂1 = −n̂2 (3.59)

28 | Systems Dynamics

Then, the states of transporters can be derived as follows:

p1 = s1 + l1n̂1 + ||r1||n̂1

= s1 + (l1 + r1)b̂ (3.60)
p2 = s2 + l2n̂2 + ||r2||n̂2

= s2 − (l2 + r2)b̂ (3.61)

Figure 3.5: Equilibrium point of the planar tethered system.

Controller Design | 29

Chapter 4

Controller Design

4.1 Centralized Control

In this section, we will describe the centralized control scheme, which is the
control scheme in which all robots are controlled by a single controller. This
controller is implemented by using the MPC controller to control a tethered
system that consists of multiple robots and a single load. The MPC controller
will solve the optimization problem to find the optimal control input for all
robots. Here, we will focus on solving a point-tracking problem.

4.1.1 Discretization

To implement MPC controller, which is a discrete controller, the system needs
to be first discretized to be a discrete-time system. There are several methods
to discretize the system, such as Forward Euler, Backward Euler, Trapezoidal,
and Runge-Kutta. In this implementation of MPC controller, the Forward
Euler method is used since this method is the most simple and also uses small
computational power. The Forward Euler method is defined as follows:

xk+1 = xk + f(tk,xk)× h (4.1)

where h is the time step size, tk is the current time, xk is the current state,
xk+1 is is the state in the next time step and f is the dynamics of the system
in continuous time. After discretizing the system, the MPC controller can be
implemented by solving the optimization problem in each time step.

30 | Controller Design

4.1.2 MPC Formulation

The naive approach to implementing a controller is to solve the full model
of the nonlinear optimization problem directly by using the dynamics model
from Eq. 3.48 - 3.55. By substituting the tension force from Eq. 3.32 into the
dynamics model, we can implement the centralized MPC for the point tracking
problem as follows:

J∗
N = min

x,u

N−1∑
k=0

(
||xk − rk||2Q + ||uk||2R

)
+ ||xN − rN ||2P

subject to xk+1 = f(xk,uk) k = 0, . . . , N − 1

umin ≤ uk ≤ umax k = 0, . . . , N − 1

x0 = x(k)

(4.2)

where f is the dynamics of the system in discrete time. umin and umax

are the minimum and maximum thruster force, respectively. ||x||A denotes
the weighted vector norm

√
xTAx. r(·) is the reference point. In our

approach, we assume rk = rN . However, this approach suffers from the
nonlinearity of the formulation of the tension force in the model, which is
computationally expensive. Thus, we propose another way to formulate the
optimization problem. In order to improve the computation efficiency [22],
instead of explicitly computing the tension force in terms of states and input
T = f(x,u), one can reduce the nonlinearity and complexity of the original
nonlinear dynamics of the system by introducing a Lagrange formulation. By
using the principle of virtual work, cable tension in the tethered system can be
reformulated in terms of the interaction force between an agent and load with
Lagrange multiplier λ ∈ R as follows:

Ti = λi(p
′
i − si) i = 1, 2, . . . , n (4.3)

where n is the number of robots. To be specific, λi will be included as
additional decision variables. Also, Eq. 3.20 ψ̈i = 0, which are the holonomic
constraints, are then considered as equality constraints in the optimal control
problem. Moreover, in practice, it is better to implement this equality
constraint as inequality constraints as follows:

|ψ̈i| ≤ ϵi i = 1, 2, . . . , n (4.4)

Controller Design | 31

where ϵi is a very small number. Therefore, the new MPC formulation can be
implemented as follows:

J∗
N = min

x,u,λ

N−1∑
k=0

(
||xk − rk||2Q + ||uk||2R

)
+ ||xN − rN ||2P

subject to xk+1 = f(xk,uk) k = 0, . . . , N − 1

umin ≤ uk ≤ umax k = 0, . . . , N − 1

|ψ̈i| ≤ ϵi, i = 1, 2, . . . , n

x0 = x(k)

(4.5)

There is one main challenge in the tethered system that is different from the
system connected with rigid rods, which is the direction of the tension force.
By nature, the tension force is always directed outward the load (i.e., pulling
the load). On the other hand, in a rigid system, the force can be applied in any
direction. It means that if the cable is not in tension, the robot will be unable
to move or control the load. Therefore, we need to add a constraint to the
optimization problem to ensure that the cable is always in tension. First, one
can constrain the direction of the force from the thruster to be always outward
the load or the same directional side as the cables as shown in Fig. 4.1. This
constraint can be derived from the inner product as follows:

n̂i · Fi ≥ 0 i = 1, 2, . . . , n (4.6)
n̂T

i Fi ≥ 0 i = 1, 2, . . . , n (4.7)

Figure 4.1: Directional constraints on the control input.

Additionally, the system is also subjected to oscillation due to the
tension force, which can lead to unstable behaviour. Therefore, we add

32 | Controller Design

another heuristic cost to the optimization problem to prevent the system from
oscillating, by maximizing the distance between the robot and the load S. This
heuristic cost is defined as follows:

Si = ||pi − pL|| i = 1, 2, . . . , n (4.8)
Ji = −λregiSi i = 1, 2, . . . , n (4.9)

where λreg is a tuning parameter for the heuristic function. It should be noted
that, in equilibrium, this heuristic cost will not converge to zero, resulting in
a constant cost value. As a result, the final centralized MPC formulation is as
follows:

J∗
N = min

x,u,λ

N−1∑
k=0

(
||xk − rk||2Q + ||uk||2R

)
+ ||xN − rN ||2P −

n∑
i=1

λregiSi

subject to xk+1 = f(xk,uk) k = 0, . . . , N − 1

umin ≤ uk ≤ umax k = 0, . . . , N − 1

|ψ̈i| ≤ ϵi, i = 1, 2, . . . , n

n̂T
i Fi ≥ 0 i = 1, 2, . . . , n

x0 = x(k)

(4.10)

4.2 Decentralized Control

As shown in the previous section, the centralized controller can suffer from
the curse of dimensionality. In other words, the computational power required
to solve the optimization problem increases exponentially with the number of
robots. In order to solve this problem, the decentralized control is proposed.
The idea is to decompose the large problem of controlling the whole system
with a single centralized controller into several sub-problems, which are
controlled by several decentralized controllers. For this system, we design
the decentralized controller for each robot that is connected to the load. The
idea is that each robot will control the load that is subject to the tension force
from the other robots Tvir as shown in Fig. 4.2.

Controller Design | 33

Figure 4.2: A single robot with virtual tension force.

The main challenge lies in determining the force applied by the other
robots. In the centralized controller, we can calculate this force directly from
the position of the other robots. However, in the decentralized controller, we
cannot do that because each robot does not know the position of the other
robots. Thus, we need to estimate this force. In this work, we propose the
simplest method to estimate this force by utilizing the equilibrium force. To
clarify, the equilibrium force is the force that the robot needs to apply to the
load in order to maintain the load in the equilibrium position. This force can
be calculated by assuming the constant force in the equilibrium direction b̂ as
described in Eq. 3.57, which can be calculated as follows:

Tvir = γb̂ (4.11)

where γ is the tuning parameter for the constant force. The idea is that if
the controlled robot assumes that other robots are keeping the load in the
equilibrium position, then this robot will solve the optimization problem as
if it is the only robot that will apply the force to move the load to the desired
position. As a result, all the robots will collaborate to move the load to the
desired position. Additionally, each robot is assumed to control only a partial
of the load, which can be calculated as follows:

m′
L = mL/n (4.12)

J ′
L = JL/n (4.13)

34 | Controller Design

where n is the number of robots. Therefore, the equation of motion of ith
subsystem can be described as follows:

ṗi = vi (4.14)
v̇i = m−1

i (ΛT
i Fi − Ti) (4.15)

q̇i =
1

2
Ωiqi (4.16)

ω̇i = J−1
i (−ω×

i Jiωi + τi − ri × (ΛiTi)) (4.17)
ṗL = vL (4.18)

v̇L = m′−1
L

(
Ti +

n−1∑
j=1

Tvirj

)
(4.19)

q̇L =
1

2
ΩLqL (4.20)

ω̇L = J ′−1
L (−ω×

LJ
′
LωL +Ri × (ΛLTi) +

n−1∑
j=1

Rj × (ΛLTvirj)) (4.21)

Thus, the decentralized MPC controller of ith robot can be formulated with
the new discretized dynamic model fdec as follows:

J∗
N = min

x,u,λ

N−1∑
k=0

(
||xk − rk||2Q + ||uk||2R

)
+ ||xN − rN ||2P − λregiSi

subject to xk+1 = fdec(xk,uk) k = 0, . . . , N − 1

umin ≤ uk ≤ umax k = 0, . . . , N − 1

|ψ̈i| ≤ ϵi

n̂T
i Fi ≥ 0

x0 = x(k)

(4.22)

4.3 Pulse Width Modulation controller

In order to control the thruster system, which is not continuous, the proper
signal is needed to formulate and send to the solenoid valve. There are
two controllers on each robot: MPC controller and Pulse Width Modulation
(PWM) controller. The MPC controller will send the force command for each
thruster to the PWM controller. PWM controller will translate the force into
the time duration for the solenoid to open in one duty cycle. This translation

Controller Design | 35

works by normalising the force value into the value between -1 and 1. In other
words, 1 means open the valve for the whole duty cycle and 0.5 means open
for half and close for half of the duty cycle as shown in Fig. 4.3. In our system,
one duty cycle is 0.1 s and the smallest time step is 0.0005 s. This controller
will be implemented on both centralized and decentralized schemes.

Figure 4.3: PWM signal for different control inputs.

36 | Experiments and Results

Chapter 5

Experiments and Results

5.1 Overview

In order to verify and evaluate the proposed model and controller, we
developed two simulators: numerical and physical simulators. The numerical
simulator is used mainly for verifying the model and testing the controller in
the ideal scenario. Then, a physical simulator is utilized to replicate the actual
behaviour of the system in real-time, including the more accurate behaviour
of the cable and the communication protocol. The overview is summarized in
Fig. 5.1.

Figure 5.1: Overview of the methods.

5.2 Numerical Simulation

From the model and equations of motion in Chapter 3, we can use the dynamic
model to simulate the system in the numerical simulator. The simulator is

Experiments and Results | 37

developed in Python as shown in Fig. 5.2. To simulate the continuous system,
we need to discretize the system first. In this section, we will first describe
the method to discretize the equations of motion of the system. Then, we will
show how to simulate and implement the controller in the simulator.

Figure 5.2: Numerical simulator developed in Python.

To get the precise discrete-time model, we use the explicit Runge-Kutta
4th Order (RK4). This method is a member of the Runge-Kutta family for
solving ordinary differential equations, specifically initial value problems.
This method is given by the following equations:

k1 = f(tk, xk) (5.1)

k2 = f(tk +
h

2
, xk +

h

2
k1) (5.2)

k3 = f(tk +
h

2
, xk +

h

2
k2) (5.3)

k4 = f(tk + h, xn + hk3) (5.4)

xk+1 = xk +
h

6
(k1 + 2k2 + 2k3 + k4) (5.5)

where h is the step size, tk is the current time and xk is the state at the kth
step, and f is the dynamics of the system. After discretizing the system, we
can simulate the system by solving the initial value problem in one step. In

38 | Experiments and Results

each time step, the current states of the system are observed and used in MPC
to calculate the control input. CasADi [30] is used to construct controllers.
Then, the control input is applied to the system to get the next states. Then,
the results of the current step are used as the initial condition for the next step.
This process is repeated until the final time is reached.

We conducted two experiments to verify the proposed model and
controller. The first experiment is to control the load to follow the desired
points in three-dimensional space. Arbitrary values of the mass and inertia
are used for both the robots and the load. The goal of this experiment is to
display the capability of a centralized controller to control the load to follow
the desired points. The second experiment is to control the load in planar
coordinates. The mass and inertia of the load are set following the actual
values of the design platform described in Chapter 6. This experiment aims
to achieve the goal of transporting the load in a real-time scenario. Thus,
the computation time is one of the main concerns in this experiment. Both
centralized and decentralized controllers are implemented in this experiment.
The experimental setup and results of both experiments are shown in the
following sections.

5.2.1 Three-dimensional Load Transportation

In the first experiment, we demonstrate the capability of our controller to
control multiple robots in three-dimensional space. Three robots are the
minimum number of robots to have full control over the load in all translation
and rotation axes. There are 52 states and 18 inputs for the system. The
experiment is conducted in numerical simulation. The system is controlled to
move the load from the origin (0,0,0) following three desired poses as shown
in Fig. 5.4. The first target is a simple translation task in the x direction
to position (1,0,0). Next, the system performs the rotation task by rotating
90 degrees clockwise around the z-axis. Then three robots will complete
the combination of translation and rotation by moving the load to the final
position (1,3,-1) with the attitude of 30 degrees around the y-axis. As shown
in Fig. 5.4a, the controller requires 9.03 s and 4.34 s maximum and average
computing time, respectively. Thus, the experiment cannot be done in a real-
time manner. As a consequence, we will perform this experiment only in the
numerical simulator, which can demonstrate that the controller is capable of
finding the solution for the desired manoeuvre.

Experiments and Results | 39

Parameter Value Unit
dt 0.1 s
m1 1 kg
m2 1 kg
m3 1 kg
mL 2 kg

J1

1 0 0
0 1 0
0 0 1

 kgm2

J2

1 0 0
0 1 0
0 0 1

 kgm2

J3

1 0 0
0 1 0
0 0 1

 kgm2

JL

1 0 0
0 1 0
0 0 1

 kgm2

r1 0.5
[
0 −1 0

]
m

r2 0.5
[
cos(π/6) sin(π/6) 0

]
m

r3 0.5
[
−cos(π/6) sin(π/6) 0

]
m

R1

[
0 1 0

]
m

R2

[
−sin(π/3) −cos(π/3) 0

]
m

R3

[
sin(π/3) −cos(π/3) 0

]
m

l1 3 m
l2 3 m
l3 3 m
ulim 10 N

D1

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 -

L1 0.5

0 0 0 0 1 −1
1 −1 0 0 0 0
0 0 −1 1 0 0

 -

D2

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 -

L2 0.5

0 0 0 0 1 −1
1 −1 0 0 0 0
0 0 −1 1 0 0

 -

D3

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 -

L3 0.5

0 0 0 0 1 −1
1 −1 0 0 0 0
0 0 −1 1 0 0

 -

Table 5.1: Parameters of the system

40 | Experiments and Results

Centralized
Parameter Value

Nt 15
Q 10 × diag(10,10,10,1,1,1,10,1,1,1,

10,10,10,1,1,1,10,1,1,1,
10,10,10,1,1,1,10,1,1,1,
10,500,10,1,1,1,500,1,1,1)

R 0.1 × eye(18)
P 10 ×Q

Table 5.2: Parameters of the controller

Figure 5.3: The whole trajectory of the load transportation.

Experiments and Results | 41

(a) Computation time and cost during the motion.

(b) Error during motion.

Figure 5.4: Three dimensional experiments.

42 | Experiments and Results

5.2.2 Two-dimensional Load Transportation

Because our testing facility is only capable of testing in planar or two-
dimensional space, the real-time system experiments will be focused on this
particular scenario. Also, only two robots are required in order to fully
control the position and orientation of the load in two-dimensional space.
Furthermore, the orientation requires only one parameter instead of four
parameters in quaternion for the three-dimensional system. As a result, the
number of the system’s states and inputs is reduced to 18 and 8, respectively.
Next, centralized and decentralized will be implemented and verified the
performance. Experiments are conducted in a similar way for both the
simulation and the actual robot. Two experiments are conducted: point
and trajectory tracking. In the following experiments, the parameters of the
system are set as shown in Tab. 5.4. The parameters for controllers are set
according to Tab. 5.3. There are 438 decision variables, 36 parameters and
468 constraints for the centralized controller, while there are 267 decision
variables, 24 parameters and 267 constraints for the decentralized controller.

Centralized
Parameter Value

Nt 15
Q 5 × diag(100,100,100,75,75,10,15

100,100,100,75,75,10,15
1000,1000,750,750,1000,100)

R 0.01 × eye(8)
P 10 ×Q
λreg 1000

Decentralized
Parameter Value

Nt 15
Q 10 × diag(100,100,80,80,5,10,

3000,3000,7500,7500,200,100
R eye(8)
P 10×Q
λreg 1000

Table 5.3: Parameters of the controller

Experiments and Results | 43

Parameter Value Unit
dt 0.1 s
m1 14.5 kg
m2 14.5 kg
mL 18.3 kg
J1 0.370 kgm2

J2 0.370 kgm2

JL 0.412 kgm2

r1 0.2 m
r2 0.2 m
R1 0.2 m
R2 0.2 m
l1 0.5 m
l2 0.5 m
ulim 1.4 N

D1

[
1 1 0 0
0 0 1 1

]
-

L1 0.12
[
1 1 0 0
0 0 1 1

]
-

D2

[
1 1 0 0
0 0 1 1

]
-

L2 0.12
[
1 1 0 0
0 0 1 1

]
-

Table 5.4: Parameters of the system

5.2.2.1 Point tracking experiment

This experiment is conducted to demonstrate the capability of the controller
to move the load to a desired pose. Four experiments are conducted to
demonstrate the translation in the x and y direction, rotation around the z-axis
and a combination of translation and rotation as follows:

1. Translation in x-direction for 0.2 m

2. Translation in y-direction for 0.2 m

3. Rotation around the z-axis for 15 degrees

4. Translation in x and y direction for 0.2 m and rotation around the z-axis
for 15 degrees

44 | Experiments and Results

In this experiment, we define the threshold for the position error as 0.005 m
and the threshold for the orientation error as 0.01 radians. The controller is
considered to have achieved the task if the position error and the orientation
error are less than the threshold for 5 seconds. We also compare the
performance of the centralized and decentralized controller in terms of
computing time and the time to achieve the task. These experiments are
first conducted in numerical simulation and then in physical simulation.
The results of the numerical simulation are shown in Fig. 5.5 and Tab.
5.5. Both centralized and decentralized controllers can achieve all given
tasks. The decentralized controller has a better performance than the
centralized controller in computing time by reducing the maximum and
average computation time by 63.6% and 68.6%, respectively. This is because
the decentralized controller has fewer decision variables than the centralized
controller. However, the decentralized controller requires more time to move
the load to the target position with 58.9% more. We can observe that the
decentralized controller is not very effective in rotating tasks.

Task Centralized
Max. computation

time [ms]
Avg. computation

time [ms]
Convergence

time [s]
1 60.6 41.7 12.2
2 52.6 42.2 10.2
3 79.9 48.2 7.3
4 66.0 44.5 12.9

avg. 64.78 44.15 10.65

Task Deceentralized
Max. computation

time [ms]
Avg. computation

time [ms]
Convergence

time [s]
1 19.0 13.3 19.8
2 19.4 13.1 10.6
3 21.2 15.2 16.0
4 34.8 13.8 21.3

avg. 23.60 13.85 16.93

Table 5.5: Results from point tracking experiments.

Experiments and Results | 45

(a) Translation in the x-axis direction for
0.2 m.

(b) Translation in the y-axis direction for
0.2 m.

(c) Rotation around z-axis for 15 degrees. (d) Combined task.

Figure 5.5: Results from point tracking experiments.

46 | Experiments and Results

5.2.2.2 Multiple points tracking experiment

To demonstrate the actual application of the controller, we will perform
multiple-point tracking experiments. This experiment is conducted by
generating the desired trajectory of the load for the system to track. Next, this
desired trajectory is discretized into a sequence of desired setpoints. Then, the
desired setpoints are sent to the controller to track. In other words, the same
point-tracking controller is used to move the load following the whole setpoints
consequently. There are two trajectories that are used in this experiment: circle
and figure eight as shown in Fig. 5.6. The circle trajectory can be formulated
as follows:

x = r cos(α) (5.6)
y = r sin(α) (5.7)

where r is the radius of the circle and α is the angle starting from 0 to 2π to
traverse the circle. The velocity and the angular velocity are calculated from
the derivative of the circle equation as follows:

ẋ = −r sin(α)α̇ (5.8)
ẏ = r cos(α)α̇ (5.9)
α̇ = constant (5.10)

where α̇ is a constant value, which is calculated from the required time to finish
the desired trajectory. The orientation θL and angular velocity of the load θ̇L
are set to be similar to α and α̇, respectively. The figure eight trajectory can
be formulated as follows:

x = a sin(α) (5.11)
y = a sin(α) cos(α) (5.12)

where a is a curvature parameter and α is the angle starting from 0 to 2π. The
derivation of the trajectory equation is as follows:

ẋ = a cos(α)α̇ (5.13)
ẏ = aα̇

(
cos2(α)− sin2(α)

)
(5.14)

Experiments and Results | 47

(a) Circle trajectory

(b) Figure eight trajectory

Figure 5.6: Trajectories for the experiments.

The desired pose of the robot is calculated by using the kinematics of the
system at an equilibrium point. By assuming the whole system to be a single
rigid body as shown in Fig. 5.7, the desired pose of the robot can be calculated
from the states of the load as follows:

pi = pL +Ri + li + ri i = 1, 2 (5.15)
vi = vL + ωL × ri i = 1, 2 (5.16)
ωi = ωL i = 1, 2 (5.17)

48 | Experiments and Results

Figure 5.7: We assume the whole system to be a single rigid body, then states
of the robots can be computed directly from states of the load.

We generate two trajectories for the system to track. The first trajectory is a
simple circle trajectory with a radius of 0.5 m and 60 reference points in total.
The second trajectory is a figure eight curve with a = 2 and 100 reference
points in total. As shown in Fig. 5.8, results show that both centralized
and decentralized controllers can track the given trajectories. Centralized
controller requires 97 ms and 86 ms average computation for circular and
eight-figure, respectively. On the other hand, the decentralized controller uses
less computational time with 14.3 ms and 14.4 ms.

(a) Circle trajectory (b) Circle trajectory

(c) Figure eight trajectory (d) Figure eight trajectory

Figure 5.8: Results from the multiple points tracking experiments.

Experiments and Results | 49

5.3 Physical Simulation

Since the numerical simulator has to wait until the controller finishes the
calculation before executing the next simulation step, the drawback of the
numerical simulator is that it is unable to capture the real-time behaviour of
the system. Also, the rigid link model is used in this simulator, resulting
in oversimplifying the actual behaviour of the tethered system. Thus, we
develop a physical simulator that can simulate the system in real-time and more
accurate behaviour. In this section, we will describe the physical simulator,
which is developed in Gazebo, and also the communication protocol in Robot
Operating System (ROS 2).

5.3.1 Simulator Description

To create a more realistic simulation, a physics-based simulator, Gazebo, is
used. This simulator can not only simulate the dynamics of the system in real-
time but also simulate the sensor and communication protocol. Therefore, we
use Gazebo to simulate the actual behaviour of the system. The main challenge
in our tethered system is to simulate the cable dynamics. One can simulate the
cable dynamics by dividing the cable into small segments and then connecting
them together with the ball joint, this joint allows the link to rotate in all axes
but prevents translation. However, to make this method work, we need to use
lots of segments to get an accurate result, which is computationally expensive
for the simulator. Therefore, we propose another method to simulate the cable
dynamics. We connect the robot to the load with three unactuated joints (i.e.,
passive joint): revolute, prismatic and revolute joint, respectively as shown in
Fig. 5.9. By using these joints, the tension and non-tension behaviour can be
achieved by the prismatic joint. In other words, when the distance between
the robot and the load is equal or larger than the maximum joint limit, the
prismatic joint will act like a rigid rod, resulting in tension force in the cable.
On the other hand, when this distance is smaller than the limit, the joint will
behave like a free joint, resulting in no tension force in the cable. Two revolute
joints are used to allow the rotation of the cable on the z-axis. Therefore, we
can simulate the cable dynamics by using only three joints and this method is
more computationally efficient than the previous method.

50 | Experiments and Results

Figure 5.9: Physical simulator in Gazebo displays prismatic and revolute joints
to imitate cable behaviour.

5.3.2 Communication Framework

The physical simulator is created along with the communication framework
to communicate between controllers and the simulation. ROS 2 is used as
a communication protocol to communicate between the controller and the
simulator, which will also later be used for the actual robot. The Gazebo
simulator will publish the states of the system to the controller. Then, the
controller will calculate the control input and publish it back to the simulator
at the specific publishing rate. This structure can also be used for the actual
robot by replacing the simulator with a real robot. The whole control and
communication structure for the simulator is shown in Fig. 5.10.

Experiments and Results | 51

Figure 5.10: The controller framework shows the communication between
controllers and robots. First, the MPC controller sends body force and torque
signals to the PWM controller. Next, the PWM controller converts the signal
and sends the proper open sequence to thrusters. The states of the robots are
then measured and sent back to the MPC controller.

5.3.3 MPC Controller Node

The controller node is used to run the MPC controller to solve the optimization
problem. This node subscribes to the states of the robot and publishes the
desired body wrench, force and torque, to the PWM controller node. This
node will run at a constant rate, which is different from the numerical simulator
that always waits for the controller to finish the calculation. As a result, the
controller node has to be able to run in real-time. In a centralized control
scheme, there is only one controller node for all robots. This single node will
receive the states of all robots and calculate the control input for all robots. On
the other hand, in a decentralized control scheme, there is one controller node
for each robot.

5.3.4 PWM Controller Node

To imitate the actual PWM controller in the simulator, PWM controller node is
used to receive the force command from the MPC controller node and convert
it to an on or off signal for each thruster. This controller node works by having
a counter that starts when it receives the command from MPC controller node.
This counter then checks the current step with the duration time. If the value
is smaller, it will send the open command (i.e., full thrust) to the thruster. On
the contrary, if the value is larger, then it will send the zero command to the
thruster. This counter is reset every duty cycle. Then the thruster command is
converted to the body force in the simulator at the center of mass of each robot
using the thruster direction matrix.

52 | Experiments and Results

5.3.5 Experimental Setup and Results

We conducted the experiment in a similar manner to the ones in numerical
simulation by tracking the desired points. There are four consequence desired
points to achieve, which represent four tasks: translating in the x-axis, trans-
lating in the y-axis, rotating around the z-axis and combining tasks. The points
(x, y, θ) are designed to be (0.2, 0.0, 0.0), (0.2, 0.2, 0.0), (0.2, 0.2, π/12) and
(0.4, 0.0, 0.0), respectively. θ is given in radian. The controller is implemented
in a centralized and decentralized manner. The results shown in Fig. 5.11
and Fig. 5.13 display that both controllers can achieve given tasks. We can
also observe that, during motion, the centralized controller scheme behaves
like a single rigid body motion, resulting in less oscillation in the states
of the robots as shown in Fig. 5.12. However, as can be seen in Fig.
5.14, each robot exhibits more oscillatory behaviour when moving under a
decentralized controller scheme. The average computation time as displayed
in Fig. 5.15 of the centralized controller is 44 ms, which is slower than the
one in the decentralized controller with 28.3 ms. This is due to the fact that
the decentralized controller has to solve the smaller optimization problem for
only one robot.

Figure 5.11: States of the load during the motion in the centralized scheme.

Experiments and Results | 53

Figure 5.12: States of the robots during the motion in the centralized scheme.

Figure 5.13: States of the load during the motion in the decentralized scheme.

54 | Experiments and Results

Figure 5.14: States of the robots during the motion in the decentralized
scheme.

Figure 5.15: Computation time of centralized and decentralized controller
during motion.

5.4 Laboratory Experimental Setup

In future work, we will implement the controller on the actual robot. The
experimental setup is shown in Fig. 5.16. The test area is a 15 m2 flat resin
floor. The Motion Capture system is installed around the area to measure and

Experiments and Results | 55

send the states of the robot to the controller. The controller will run on the
onboard computer, which is NVIDIA Jetson ORIN NX. The NVIDIA Jetson
ORIN NX will communicate with the PWM controller, which is Pixhawk 6X,
through the Ethernet cable. All data will be communicated using the ROS 2
protocol.

Figure 5.16: Laboratory setup in Space Robotics Lab.

56 | Platform description

Chapter 6

Platform description

In this chapter, we explain the detailed description of the air carriages used in
the experiments. These air carriages are designed to imitate the dynamics of
the object in a microgravity environment or space. Since it is difficult to create
a full microgravity environment on Earth due to the existence of gravity, the
air carriage is designed to imitate the dynamics of the objects only in planar
motion. In this specific case, we can introduce a frictionless environment
by using an air-bearing carriage and substantially smooth floor [8, 9]. The
air-bearing carriage is a device that can float on a thin layer of air, which
is generated by compressed air through the bearing. This air cushion will
reduce the friction between the robot and the floor to be negligible. There are
three main systems in the air carriage: mechanical system, pneumatic system,
and electrical system. The mechanical system is the structure that connects
the pneumatic and the electrical system. The pneumatic system is the system
that stores and generates air for levitation and thruster systems. The electrical
system is the system that controls the whole system. There are two design
versions: Proto and Alpha. The first version is used as a load, while the second
version is used for the robot or the transporter. The design of the Alpha version
is based on the design of the Proto version as shown in Fig 6.1.

Platform description | 57

(a) Proto (b) Alpha

Figure 6.1: Air carriage platforms for the experiments.

6.1 Design Requirements

The goal of the air carriage is to imitate the dynamic of the free-flyer. In this
thesis, we design based on Astrobee [31, 32], which is operated in the ISS.
The design parameters are chosen to be larger than Astrobee in order to mimic
the behaviour as shown in Tab. 6.1.

Table 6.1: Robot Specification

Paremeters Astrobee Proto Alpha
Mass [kg] 10 18.3 14.5
Max. acceleration [m/s2] 0.1 0.19 0.24
Max. angular acceleration [rad/s2] 0.59 1.02 1.13
Max. thrust (x-axis)*[N] 0.425 1.75 1.75
Max. thrust (y-axis)*[N] 0.203 1.75 1.75
Max. torque [Nm] 0.085 0.42 0.42
Moment of inertia [kgm2] - 0.412 0.370
* Calculated per vent for Astrobee and per thruster for Proto and Alpha.

58 | Platform description

6.2 Mechanical Design

Our air carriages are designed to be compact and modular. The main structure
is divided into three layers: the pneumatic layer, the actuation layer and the
electronics layer. The pneumatic layer is the bottom layer that is used to mount
the pneumatic system and air bearing. The actuation layer is designed to be
replaceable. In this work, we use thrusters as the actuation system. However,
one can replace it with other actuators such as propellers. The electrical layer
on the top is used to mount the electrical system and battery. This layer also has
an extension, which can rather connect to more sensors, including cameras, or
other payloads. The dimension of the air carriage is shown in Fig. 6.2 and
Fig.6.3. for Proto and Alpha, respectively.

Figure 6.2: Proto version.

Platform description | 59

Figure 6.3: Alpha version.

6.3 Pneumatic System

In order to imitate the dynamics of the robots in the microgravity environment,
there are two main systems: levitation and thruster system. The former
system is used to demonstrate the frictionless scenario in planar motion or
three-degree-of-freedom (3DOF) system. The latter system is designed to
generate the force and torque to actuate the robot. To generate the air for both
systems, we need to design the pneumatic system. This system consists of two
subsystems: air storage and air regulation. The air storage is used to store the
air from the air compressor. There are three air tanks for each robot. The air
regulation is used to regulate and supply air at the proper pressure for both
levitation and thruster systems. This system is designed in a customized way
to fit the requirements of the air carriage. To illustrate, it can select the number
of air tanks for each main system. For instance, one can choose one air tank
for the levitation system and two air tanks for the thruster system for the active
air carriage. Also, one can choose three air tanks for the levitation in order
to make air carriage act as a passive load. Output air from the tanks is then
regulated by the regulator to a desired operating pressure for each main system.
The whole pneumatic system is displayed in Fig. 6.4.

60 | Platform description

Figure 6.4: Schematic of the pneumatic system shows important components.

This system is also the main difference between the Proto and Alpha
versions. The Proto version uses 1.3L air tanks and two industrial high-
pressure regulators while the Alpha version uses 1.5L air tanks, three bottle
regulators and two low-pressure regulators. The reason for this change is to
reduce the weight and cost and increase the operating time of the air carriage.
Additionally, with the new design, the control panel or the pneumatic manifold
is also changed. The Alpha version uses smaller valves and a smaller manifold,
which can attach to the side of the robot instead of the top of the robot. This
modification is intended to make it simpler for the user to configure the air
carriage. Moreover, there are additional components in the Alpha version,
which are high-pressure regulators. These regulators are connected directly
to the bottle regulator to reduce the pressure from 55 bar to 10 bar. With this
configuration, the new air carriage does not require an industrial regular as in
the old version. As a result, the smaller regulator can be used, which is lighter
and cheaper. The new pneumatic system is shown in Fig. 6.5. Components
for Proto and Alpha versions are summarized in Tab. 6.2.

Platform description | 61

Figure 6.5: Schematic of the new pneumatic system includes additional high-
pressure regulators.

Table 6.2: Pneumatic components

Items Proto
Levitation regulator (a) AS-STKHM-KPR1FLC411A200H0*

Thruster regulator (b) AS-STKHM-KPR1GLB415A200H0*

Compressed air bottle DYE CORE AIR TANK 1.3L 4500PSI
Bottle regulator DYE LT THROTTLE REGULATOR 4500PSI
* Components from Swagelok

Items Alpha
Levitation regulator (a) MS4-LR-1/4-D7-AS+

Thruster regulator (b) MS4-LR-1/4-D7-AS+

Compressed air bottle DYE CORE AIR TANK 1.5L 4500PSI
Bottle regulator DYE LT THROTTLE REGULATOR 4500PSI
High pressure regulator (c) Polarstar micro MR GEN2 Regulator
+ Components from Festo

6.3.1 Levitation System

This system utilizes the characteristics of the air bearings to demonstrate
frictionless behaviour. These specific bearings generate a thin film of
pressurized air as an air cushion between the bearing and the contact area.

62 | Platform description

This film provides a zero-friction interface between the surfaces. To create
this film, air needed to be supplied properly through the bearing surface into
the gap. In this thesis, we use NEWWAY air bearing S105001 ∗ as shown in
Fig. 6.6, which requires an input pressure of 60 psi (4.1 bar) and it can hold
the load up to 35 kg. There are 3 bearings on each robot.

Figure 6.6: Air bearing at the base of the robot.

6.3.2 Thruster System

Another important system in the air carriage is the thruster or actuation system.
This system is used to drive the robot in the desired direction. The thruster
uses the same design principle as the rocket by pushing out the gas from the
nozzle to generate thrust. Compressed air is used instead of the propellant
in this carriage. There are two thrusters on each side of the robot, a total of
eight as shown in Fig 3.3. This configuration allows the robot to move in all
directions in a planar coordinate (3DOF) and rotate around the z-axis (the axis
perpendicular to the plane). We use an MHJ10-S-2,5-QS-6-HF solenoid valve
to open and close the airflow of the thruster. The valve is controlled by the
PWM signal from a microcontroller. The solenoid valve is connected to the
nozzle through the 6 mm tube (4 mm inner diameter). This nozzle is a simple
4 mm cylindrical tube (2 mm inner diameter). In order to make this system
compact, we combine two solenoid valves, two nozzles, and one buck-boost
converter into one module as shown in Fig 6.7. There are four modules on
each robot. The schematic of the thruster system is shown in Fig. 6.8.

∗https://www.newwayairbearings.com/catalog/product/50mm-flat-round-air-bearings

Platform description | 63

Figure 6.7: Thruster module consists of two solenoid valves, two nozzles and
one buck-boost converter.

Figure 6.8: Thruster configuration of the robot on the actuation layer.

6.4 Electronics

This system is used to operate the robot. The main components are a computer,
microcontroller, and battery. NVIDIA Jetson ORIN NX is used as the main

64 | Platform description

computer. This onboard computer is used to run the control algorithm (i.e.,
MPC) and communicate with the microcontroller. We choose Pixhawk 6X to
be the microcontroller, which is used to send the PWM signal to control the
solenoid valve. Foxtech 6S 9500mAh Li-ion Battery is used to supply power
to the whole system. The schematic of the electrical system is shown in Fig.
6.9.

Figure 6.9: Electronics system of the platform.

Conclusions and Future work | 65

Chapter 7

Conclusions and Future work

In this thesis, we have proposed a centralized and decentralized MPC
to achieve the multi-agent load transportation task in a microgravity
environment. Also, the dynamics model of the n-agent tethered system
in three dimensions is derived. This model is then used to design the
predictive controllers. We also propose a way to reduce the nonlinearity
of the system by reformulating the optimization problem by introducing a
new minimizer instead of a full explicit model. The key advantage of this
approach is the faster computation time, which allows the controller to run
at a higher frequency. Next, we design a centralized controller for the multi-
agent system. The controller is then tested in the simulation environment.
The simulation results show that our controller is capable of tracking the
desired point and trajectory. To demonstrate the practicality of our controller
on the real-world system, we develop a physical simulator based on the
actual air carriage’s behaviour in planar motion. this simulation is used
to verify the performance of our controller in the real-time environment.
Our centralized controller is then tested again in this environment and the
results show that our controller is capable of tracking the desired points.
However, the computation time is still a challenge for the centralized controller.
Therefore, we propose a decentralized controller to solve this problem. By
dividing the system into several subsystems, we can reduce the number of
states, inputs and constraints in the optimization problem, resulting in faster
computation time. The decentralized controller is also tested in the simulation
and shows the capability of tracking the desired point and trajectory, even
without communication.

Furthermore, we present the development of the modular design air
carriage. The design requirement is based on NASA Astrobee in terms of

66 | Conclusions and Future work

velocity and acceleration. The design is then optimized to reduce the weight
and increase the usability of the system. The final design is then fabricated and
tested in the lab. The carriage uses the air bearing to imitate the frictionless
environment. It also uses the same pneumatic system to generate the thrust in
order to manoeuvre around. This thruster system uses the same principle as
the rocket in space, which is the conservation of momentum. PWM controller
is then used to control each solenoid valve to open and close in a designed
manner.

Through the outcomes of the experiments, although our centralized
controller can move the load following the desired setpoints, they are still
limited by the computation time, resulting in the challenge of scaling the
controller up for more agents. The computation time is not only mainly
affected by the number of states and constraints, but also the nonlinearity
of the system. The proposed decentralized scheme is just one of several
solutions to address this problem. Future work can address these problems by
reformulating the optimization problem and also linearizing the system. The
decentralized controller, on the other hand, can achieve the desired setpoints
with a faster computation time. Additionally, this approach will suffer less
from the curse of dimensionality. However, the system requires a longer time
to converge to the desired point. This is due to the fact that the controller is
not able to perceive the position of the other agents. As a result, the controller
uses the virtual cable tension to estimate the actual cable tension. Therefore,
the solution control input from the controller is not optimal, leading to a longer
converging time and oscillating behaviour. In future work, we can address this
problem by formulating a better assumption for the virtual cable tension. Also,
one can also address this problem by introducing communication between the
agents using distributed control framework. This will allow the controller to
perceive the position of the other agents, resulting in the optimal control input.
Finally, the more obvious benefits of the proposed controllers need also to be
shown by applying this control algorithm to actual robots.

References | 67

References

[1] “The Current State of Space Debris.” [Online]. Available: https:
//www.esa.int/Space_Safety/Space_Debris/The_current_state_of_spa
ce_debris [Page 2.]

[2] N. Orbital Debris Program Office, “Orbital Debris Quarterly News 27-
2,” Tech. Rep. [Online]. Available: https://software.nasa.gov/software/
[Page 2.]

[3] Donald J. Kessler and Burton G. Cour-Palais, “Collision Frequency of
Artificial Satellites: The Creation of a Debris Belt,” 1978. [Page 2.]

[4] M. Shan, J. Guo, and E. Gill, “Review and comparison of active space
debris capturing and removal methods,” pp. 18–32, 1 2016. [Page 2.]

[5] A. Ledkov and V. Aslanov, “Review of contact and contactless active
space debris removal approaches,” 10 2022. [Page 2.]

[6] M. Ekal, K. Albee, B. Coltin, R. Ventura, R. Linares, and D. W. Miller,
“Online Information-Aware Motion Planning with Inertial Parameter
Learning for Robotic Free-Flyers,” 12 2021. [Online]. Available:
http://arxiv.org/abs/2112.05878 [Page 2.]

[7] NASA ODPO, “LEO-2019-4096.” [Online]. Available: https://orbitald
ebris.jsc.nasa.gov/photo-gallery/_images/highresolution/LEO-2019-4
096.jpg [Pages vi and 3.]

[8] Y. Nakka, R. Foust, E. S. Lupu, and S.-J. Chung, “Six Degree-
of-Freedom Spacecraft Dynamics Simulator for Formation Control
Research Chance Constrained Nonlinear Stochastic Optimal Control For
Motion Planning View project,” Tech. Rep., 2018. [Online]. Available:
https://www.researchgate.net/publication/327067426 [Pages 3 and 56.]

https://www.esa.int/Space_Safety/Space_Debris/The_current_state_of_space_debris
https://www.esa.int/Space_Safety/Space_Debris/The_current_state_of_space_debris
https://www.esa.int/Space_Safety/Space_Debris/The_current_state_of_space_debris
https://software.nasa.gov/software/
http://arxiv.org/abs/2112.05878
https://orbitaldebris.jsc.nasa.gov/photo-gallery/_images/highresolution/LEO-2019-4096.jpg
https://orbitaldebris.jsc.nasa.gov/photo-gallery/_images/highresolution/LEO-2019-4096.jpg
https://orbitaldebris.jsc.nasa.gov/photo-gallery/_images/highresolution/LEO-2019-4096.jpg
https://www.researchgate.net/publication/327067426

68 | References

[9] A. Banerjee, J. Haluska, S. G. Satpute, D. Kominiak, and
G. Nikolakopoulos, “Slider: On the Design and Modeling of
a 2D Floating Satellite Platform,” 1 2021. [Online]. Available:
http://arxiv.org/abs/2101.06335 [Pages 3 and 56.]

[10] R. C. Sundin, P. Roque, and D. V. Dimarogonas, “Decentralized
Model Predictive Control for Equilibrium-based Collaborative UAV Bar
Transportation,” Tech. Rep., 2022. [Pages 3 and 4.]

[11] W. S. Cortez, C. K. Verginis, and D. V. Dimarogonas, “A Distributed,
Event-Triggered, Adaptive Controller for Cooperative Manipulation with
Rolling Contacts,” IEEE Transactions on Robotics, vol. 39, no. 4, pp.
3120–3133, 8 2023. doi: 10.1109/TRO.2023.3268595 [Page 3.]

[12] B. Wang, Z. Meng, and P. Huang, “Attitude control of towed space debris
using only tether,” Acta Astronautica, vol. 138, pp. 152–167, 9 2017. doi:
10.1016/j.actaastro.2017.05.012 [Page 4.]

[13] Mario L. Cosmo and Enrico C. Lorenzini, “Tethers In Space Handbook-
Second Edition,” Tech. Rep., 1997. [Page 4.]

[14] A. Tagliabue, M. Kamel, S. Verling, R. Siegwart, and J. Nieto,
“Collaborative transportation using MAVs via passive force control,”
in Proceedings - IEEE International Conference on Robotics and
Automation. Institute of Electrical and Electronics Engineers Inc., 7
2017. doi: 10.1109/ICRA.2017.7989678. ISBN 9781509046331. ISSN
10504729 pp. 5766–5773. [Page 4.]

[15] C. Yang, G. N. Sue, Z. Li, L. Yang, H. Shen, Y. Chi, A. Rai, J. Zeng, and
K. Sreenath, “Collaborative Navigation and Manipulation of a Cable-
Towed Load by Multiple Quadrupedal Robots,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 10 041–10 048, 10 2022. doi:
10.1109/LRA.2022.3191170 [Page 4.]

[16] M. Gassner, T. Cieslewski, and D. Scaramuzza, “Dynamic Collaboration
without Communication: Vision-Based Cable-Suspended Load
Transport with Two Quadrotors,” Tech. Rep. [Online]. Available:
http://www.ifi.uzh.ch/en/rpg.html [Page 4.]

[17] S. Erhart, D. Sieber, and S. Hirche, “An impedance-based control
architecture for multi-robot cooperative dual-arm mobile manipulation,”
Tech. Rep. [Page 4.]

http://arxiv.org/abs/2101.06335
http://www.ifi.uzh.ch/en/rpg.html

References | 69

[18] P. Behruzi, D. Roascio, D. R. Kirk, G. Lapilli, and H. J. Zachrau,
“SPHERES TETHER SLOSH free flyer experiment on ISS,” in 2018
Joint Propulsion Conference. American Institute of Aeronautics
and Astronautics Inc, AIAA, 2018. doi: 10.2514/6.2018-4939. ISBN
9781624105708 [Page 4.]

[19] H. T. Linskens and E. Mooij, “Tether dynamics analysis and guidance and
control design for active space-debris removal,” Journal of Guidance,
Control, and Dynamics, vol. 39, no. 6, pp. 1232–1243, 2016. doi:
10.2514/1.G001651 [Page 4.]

[20] T. Lee, “Geometric Control of Quadrotor UAVs Transporting a
Cable-Suspended Rigid Body,” IEEE Transactions on Control Sys-
tems Technology, vol. 26, no. 1, pp. 255–264, 1 2018. doi:
10.1109/TCST.2017.2656060 [Page 4.]

[21] F. De Vincenti and S. Coros, “Centralized Model Predictive Control for
Collaborative Loco-Manipulation,” Tech. Rep., 2023. [Page 4.]

[22] J. Kim, R. T. Fawcett, V. R. Kamidi, A. D. Ames, and K. A. Hamed,
“Layered Control for Cooperative Locomotion of Two Quadrupedal
Robots: Centralized and Distributed Approaches,” 11 2022. [Online].
Available: http://arxiv.org/abs/2211.06913 [Pages 5 and 30.]

[23] F. Dunn and I. Parberry, “3D Math Primer for Graphics and Game
Development Second Edition,” Tech. Rep. [Page 7.]

[24] F. Landis Markley and J. L. Crassidis, “Fundamentals of Spacecraft
Attitude Determination and Control,” Tech. Rep., 2014. [Online].
Available: http://www.springer.com/series/6575 [Pages 7 and 8.]

[25] Y.-B. Jia, “Quaternions* (Com S 477/577 Notes),” 2022. [Pages 8 and 9.]

[26] D. Q. Huynh, “Metrics for 3D rotations: Comparison and analysis,”
Journal of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–
164, 10 2009. doi: 10.1007/s10851-009-0161-2 [Page 11.]

[27] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, “Model Predictive
Control: Theory, Computation, and Design 2nd Edition,” Tech. Rep.
[Online]. Available: http://www.nobhillpublishing.com [Page 14.]

[28] J. Albersmeyer and M. Diehl, “The Lifted Newton Method and Its
Application in Optimization,” SIAM Journal on Optimization, vol. 20,
no. 3, pp. 1655–1684, 1 2010. doi: 10.1137/080724885 [Page 15.]

http://arxiv.org/abs/2211.06913
http://www.springer.com/series/6575
http://www.nobhillpublishing.com

70 | References

[29] C. M. Pong, A. Saenz-Otero, and D. W. Miller, “Autonomous thruster
failure recovery on underactuated spacecraft using model predictive
control AUTONOMOUS THRUSTER FAILURE RECOVERY ON
UNDERACTUATED SPACECRAFT USING MODEL PREDICTIVE
CONTROL,” Tech. Rep., 2011. [Page 17.]

[30] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 3 2019. doi: 10.1007/s12532-018-0139-4 [Page 38.]

[31] K. Albee, M. Ekal, C. Oestreich, and P. Roque, “A Brief Guide
to Astrobee’s Flight Software Revision 1.1,” Tech. Rep., 2021.
[Online]. Available: https://github.com/albee/a-brief-guide-to-astrobee
[Page 57.]

[32] “Astrobee Guest Science Guide,” Tech. Rep., 2017. [Online]. Available:
https://www.nasa.gov/astrobee. [Page 57.]

https://github.com/albee/a-brief-guide-to-astrobee
https://www.nasa.gov/astrobee.

TRITA-EECS-EX- 2023:0000

www.kth.se

	Introduction
	Overview
	Related work
	Structure of the thesis

	Background
	Quaternion
	Quaternion Algebra
	Quaternion Differentiation
	Quaternion Distance

	Model Predictive Control
	Constrained Finite Horizon Optimal Control
	Receding Horizon
	Direct Single and Direct Multiple Shooting
	Single Shooting Method
	Multiple Shooting Method

	Systems Dynamics
	Modelling of a single free flyer
	Modelling of an n-agent tethered system
	Modelling of a tethered system in planar coordinates
	Equilibrium of the system
	Equilibrium of the n-agent tethered system
	Equilibrium of the planar tethered system

	Controller Design
	Centralized Control
	Discretization
	MPC Formulation

	Decentralized Control
	Pulse Width Modulation controller

	Experiments and Results
	Overview
	Numerical Simulation
	Three-dimensional Load Transportation
	Two-dimensional Load Transportation
	Point tracking experiment
	Multiple points tracking experiment

	Physical Simulation
	Simulator Description
	Communication Framework
	MPC Controller Node
	PWM Controller Node
	Experimental Setup and Results

	Laboratory Experimental Setup

	Platform description
	Design Requirements
	Mechanical Design
	Pneumatic System
	Levitation System
	Thruster System

	Electronics

	Conclusions and Future work
	References

