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Abstract
Interest in the development of autonomous rendezvous and docking (ARD)
has been growing since the 1960s as it is an important procedure for refueling
spacecraft and transferring resources. Achieving centimeter-scale accuracy in
ARD commonly relies on Visual Servoing (VS). Two common classical VS
methods are Image-Based Visual Servoing (IBVS) and Position-Based Visual
Servoing (PBVS) utilize a velocity-based control law that is straightforward,
yet suffer from depth or visibility sensitivity and local minima.

This thesis presents a hybrid VS with Model Predictive Control (MPC)
docking pipeline for a free-flyer that requires only an RGB-D camera and
a Computer Aided Design (CAD) model of a docking station. The pose
of the station is initialized by Globally optimal-ICP (GO-ICP) and refined
with Generalized Iterative Closest Point (GICP). This estimation seeds a
trajectory-tracking MPC that orients the free-flyer to maximize the visibility
of geometric point features. A dynamic weighting strategy in the MPC cost is
then used to control the soft-switching between PBVS and IBVS. Finally, the
feature dynamics is described to the MPC to minimize the image errors while
respecting system constraints.

We evaluated the method in Robot Operating System (ROS) with Gazebo
on a planar 3-degree of freedom (DOF) free-flyer and further validated it
in the KTH Space Robotics Laboratory (SRL), reporting docking success
rate, steady-state pose error, and computation time. The results indicated
reliable docking without AR tags, using only geometric fiducials, and
demonstrated that the PBVS-IBVS transition improves visibility and mitigates
local-minimum failures.

Keywords
Computer vision, Free-flyer, Iterative Closest Point, Model Predictive Control,
Visual servo



ii | Abstract



Sammanfattning | iii

Sammanfattning
Intresset för utvecklingen av autonomous rendezvous and docking (ARD)
har ökat sedan 1960-talet, eftersom det är ett viktigt förfarande för att tanka
rymdfarkoster och överföra resurser. Att uppnå noggrannhet på centimeternivå
i ARD bygger ofta på Visual Servoing (VS). Två vanliga klassiska VS-metoder
är Image-Based Visual Servoing (IBVS) och Position-Based Visual Servoing
(PBVS), som använder en hastighetsbaserad reglerlag som är enkel men ändå
känslig för djup och synlighet samt drabbas av lokala minima.

Denna avhandling presenterar en hybrid VS- och Model Predictive Control
(MPC)-baserad dockningspipeline för en fri-flygande plattform som endast
kräver en RGB-D-kamera och en Computer Aided Design (CAD)-modell av
en dockningsstation. Stationens pose initieras med Globally optimal-ICP (GO-
ICP) och förfinas med Generalized Iterative Closest Point (GICP). Denna
skattning initierar en banaföljande MPC som orienterar den fri-flygande
plattformen för att maximera synligheten av geometriska punktlandmärken.
En dynamisk viktning i MPC-kostnadsfunktionen används därefter för att
åstadkomma mjuk växling mellan PBVS och IBVS. Detta gör att MPC
kan optimera kamerans hastigheter för att minimera bildfelet samtidigt som
systembegränsningarna respekteras.

Vi utvärderade metoden i Robot Operating System (ROS) med Gazebo på
en plan 3-degree of freedom (DOF) fri-flygande plattform och validerade den
vidare i KTH Space Robotics Laboratory (SRL). Vi redovisar andelen lyckade
dockningar, stationärt posefel och beräkningstid. Resultaten visar tillförlitlig
dockning utan AR-taggar — med enbart geometriska referensmarkörer — och
att övergången PBVS–IBVS förbättrar synligheten och minskar fel orsakade av
lokala minima.

Nyckelord
Datorseende, Friflygande robot,Iterative Closest Point, Modellprediktiv
reglering, Visuell servostyrning
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Chapter 1

Introduction

The introductory chapter provides an overview of the thesis. It starts with
the background of autonomous rendezvous and docking (ARD), highlighting
how important visual servoing methods are in space robotics. It is then
followed by a problem statement that needs to be tackled in markerless docking
and motivates the implementation of hybrid visual servoing. The purpose
and objectives of the work are also discussed, clarifying both its academic
and practical contributions. The chapter defines the research methodology,
examines the ethical and sustainability aspects, and discusses the delimitations
of this work. Finally, the thesis’s structure is described to guide the reader
through the subsequent chapters.

1.1 Background
Since the middle of the 20th century, research on ARD has been active due
to its crucial role in space missions such as crew transfers, satellite servicing,
orbital assembly, and spacecraft refueling operations [1]. NASA’s Technology
Roadmap highlighted ARD as a critical technology for developing space
exploration capabilities due to its strategic significance [2].

Historically, spacecraft docking procedures predominantly relied on
human-in-the-loop teleoperation methods, where human operators remotely
control the spacecraft movement [3]. However, teleoperation methods
suffer mainly from latency issues, robustness, and resource efficiency.
Consequently, research initiatives shifted towards fully autonomous docking
methodologies, minimizing or completely eliminating dependency on human
operators in spaceship operations.

Extensive research on autonomous docking has incorporated VS method-
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ologies, allowing the robot to effectively approach, grasp, and manipulate
objects by controlling their relative motion based on visual information [4].
The classical VS methods are classified by the type of feedback information
they use into three categories: IBVS, PBVS, and hybrid VS [5, 6].

In IBVS, 2D image features are tracked; the image-plane error between
their current and desired feature location is used for the control error feedback,
allowing the robot to converge without an explicit 3D model. In PBVS, it will
first obtain a full 6D pose estimation of the target and then drive the pose
error to zero. This approach often provides smoother trajectories but can be
sensitive to camera calibration drift and visibility issues. Hybrid VS blends
these 2 error signals by combining Cartesian-space and image-space terms.
This method has the advantages of IBVS and PBVS, which can provide a
broad convergence region of PBVS while retaining local stability and visibility
robustness of IBVS [7, 8, 5]. Therefore, to implement hybrid VS, we need a
reliable image-feature detection, followed by a 6-degree of freedom (DOF)
pose estimation method.

Current pose estimators are divided into several categories. First,
correspondence-based method that utilizes object features. This method has
low computational load but is sensitive to texture-less objects [9, 10]. Iterative
Closest Point (ICP) and related dense alignment algorithms that refine a coarse
pose to sub-millimeter accuracy are also included in this category. Second, a
template-based matching, which copes well with low texture yet scales poorly
with the number of stored views. Lastly, a regression-based methods that can
achieve state-of-the-art robustness at the cost of extensive training data and
high computational load [11, 12, 13, 14, 4].

Robust and reliable feature extraction and pose estimation only solve half
of the hybrid VS problem. Once the required visual information is available,
the controller must respect actuator limits, keep the target in the camera field of
view (FOV), and avoid collisions. While classical IBVS or PBVS laws use pure
proportional control and cannot handle constraints explicitly, MPC overcomes
this limitation. MPC offers a receding-horizon control strategy, predicting the
robot’s future states over a finite horizon and minimizing a cost function that
can follow inequality constraints [15, 16].

1.2 Problem Statement
Despite significant advancements in ARD, current methods still have some
limitations. Many autonomous docking systems still depend on special
markers (e.g., AprilTags, ARTags, ARToolkit) placed on the target [17], or
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on human-assisted teleoperation. Both approaches limit their applicability
in semi-structured or uncertain environments. Therefore, relying on
artificial markers remains a significant challenge for space applications where
robustness and adaptability are essential.

Regarding VS modes, both IBVS and PBVS offer advantages and suffer
from inherent drawbacks. Hybrid VS aims to combine the strengths of
both approaches, providing improved robustness and convergence. However,
designing dynamic switching strategies that enable seamless transitions
between IBVS and PBVS remains an active and open research challenge
[18, 19].

This thesis develops a combination of visual servo control laws with
MPC, utilizing blob-shaped fiducial markers that represent semi-unstructured
environment. The work aims to bridge the gap between structured and
fully unstructured docking scenarios. The following research questions are
prompted for this thesis.

• What is the performance (computational time, accuracy, and robustness)
of the proposed hybrid MPVS approach?

• How can dynamic weighting strategies be designed and tuned to
achieve high-performance hybrid IBVS–PBVS behavior within an MPC
framework?

• How does the design of the switching criteria in a hybrid visual servoing
system affect the performance?

1.3 Purpose
The purpose of this master’s thesis is to design and validate an autonomous
docking system using a hybrid Model Predictive Visual Servoing (MPVS).
The system identifies the object (in this case, the docking station) using
its Computer Aided Design (CAD) model and an RGB-D camera, then
uses MPC to maneuver the free-flyer. This system is tested in the
Space Robotics Laboratory (SRL), established under the Wallenberg AI,
Autonomous Systems and Software Program (WASP) research program
named DISCOWER (Distributed Control in Weightless Environments) at
KTH’s Integrated Transport Research Lab (ITRL). By showing the centimeter-
level accuracy and a high docking success rate, this work provides significant
value to one of the lab’s objectives—to automate the refueling process.
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1.4 Goals
Develop and demonstrate a modular, low-latency docking pipeline that
enables a free-flyer to estimate the pose of untagged docking fixtures, and
autonomously align and mate with those fixtures through a hybrid VS. This
has been divided into the following two sub-goals as referred to in the research
questions:

1. Pose Estimation Evaluation: Evaluate the performance of proposed GO-
ICP with GICP pipeline.

2. Hybrid VS Efficacy: Design the proposed hybrid VS switching
strategies and compare their performance in terms of convergence rate,
final pose error, and docking success rate.

1.5 Research Methodology
This thesis uses quantitative and experimental research to answer the research
questions: pose error in meters, angular error in degrees, convergence time in
seconds, success rate in percent, and computational load in seconds (pipeline
update rate).

The overall research approach follows a classic design-build-evaluate cy-
cle. First, a structured literature review compares the strengths and weaknesses
of existing pose-estimation approaches and visual-servo controllers. The most
suitable combination of a free-flying robot is then selected and implemented
as a modular Robot Operating System (ROS) 2 system, with the simulation
running in Gazebo Harmonic. The same software is subsequently deployed
on the Jetson-powered free-flyer in the DISCOWER SRL for hardware-in-the-
loop evaluation. This two-step validation ensures that conclusions about the
research questions hold in both virtual and real environments.

1.6 Ethics and Sustainability
This thesis addresses several important ecological, environmental, and social
sustainability considerations on the development of autonomous docking
process.

From an ecological perspective, the proposed method might contribute to
enable key missions such as refueling, crew transfer, assembly, and servicing
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in orbit. By improving docking accuracy and robustness, it may help to extend
the operational lifetime of spacecraft and minimize material waste.

From an economic perspective, autonomous docking development can
reduce mission cost by lowering the damage and risk of failure. Furthermore,
the need for manual supervision can be reduced.

From a social perspective, autonomous docking reduce the need for human
involvement in a potentially hazardous environment. Furthermore, research on
visual servoing often can be adopted in other domains, such as autonomous
vehicles or medical robots, bringing the society into more efficient and safer
technologies.

1.7 Delimitations
This research is delimited by the following factors:

• 3-DOF microgravity hardware validation: Experiments are restricted to
the lab’s planar 3-DOF free-flyer. Extending the pipeline to full 6-DOF
motion in true microgravity would require a different testbed.

• Learning-based pose estimation: As mentioned in section 1.1, state-
of-the-art deep-learning networks for 6-DOF pose estimation demand
a high performance of embedded GPU and memory bandwidth that
exceeds the capabilities of the onboard computer available on the
DISCOWER free-flyer.

• Hybrid weighting strategy: This thesis implemented an approach to
dynamically blend PBVS and IBVS in the MPC. Time constraints
necessitate further research into alternative switching strategies to
develop more efficient and intelligent control schemes.

• Environmental Disturbances: The system does not fully account for
extreme object occlusions and extreme lighting conditions. The
evaluation assumes static lighting and sensor noise with a small number
of occlusions.

1.8 Structure of the thesis
Chapter 2 presents relevant background information and theoretical concepts
about visual servo control categories (IBVS, PBVS, hybrid VS), pose
estimation methods, quaternions, and MPC fundamentals. Chapter 3 explains
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the coordinate system and modeling of the free-flyer. Chapter 4 describes
the detailed design of the custom docking station. Chapter 5 details the
methods used to solve the problem and how the theories are developed and
integrated, starting from processing the point cloud, cascaded ICP, and MPVS
controller. Chapter 6 presents the preparation to perform the experiment
as well as the experiment results, including the performance of the pose
estimation and hybrid VS, and discusses the results of different hybrid VS
approaches. Finally, Chapter 7 summarizes the main findings and suggests
potential research for future works.
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Chapter 2

Background

This chapter addresses the foundations needed for this work. The chapter
starts with the overview of Visual Servoing and its classification, highlighting
their principles, strengths, and limitations. It also covers several key
concepts such as point cloud processing, pose estimation methods, and
quaternion representations for 3D rotations. This chapter also introduces
Model Predictive Control (MPC) as the control framework that facilitates
predictive capabilities with constraint handling during docking procedures.

2.1 Visual Servoing
Visual Servoing (VS) is a common technique that leverages visual information
as input of a closed-loop control system for controlling the motion of a
dynamical system. The main classification of VS is based on how the control
error is defined. In IBVS, the error is expressed directly in the image space
using visual features such as points, lines, or contours. In contrast, PBVS
defines the error in 3D space, using the estimated pose of the camera or of the
object relative to the camera. Hybrid VS combines the 2D features error IBVS
with 3D information PBVS, aiming to benefit from each category.

Besides this primary classification, VS systems can also be characterized
according to the camera configuration and the number of cameras used. With
respect to camera placement, vision data can be obtained from a camera
mounted directly on the robot (eye-in-hand configuration) or from a fixed
camera, observing the robot in the workspace (eye-to-hand configuration).
Based on the number of cameras, there are monocular, binocular (stereo), and
multi-camera systems. Monocular systems are easy to use and cost-effective
although limited to 2D image measurements without direct depth estimation.
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Stereo systems enable depth recovery by using triangulation. However, it
requires more complex calibration and Jacobian computation. Multi-camera
systems can provide richer information, wider FOV, and better robustness
against occlusions, at the expense of increased processing loads [20, 5].

The goal of vision-based control is to minimize an error term that is usually
defined by the following equation form:

e(𝑡) = s(m(𝑡), a) − s∗ (2.1)

The error is defined from the measured visual features s from image
measurements m(𝑡), with a set of parameters a that adds more information
about the system, such as 3D models of the object or camera parameters.
Vector s∗ represents the desired values of the features.

After s is chosen, the control scheme can be designed by obtaining the
relationship between camera twist (linear and angular velocity of the camera
frame) 𝑜𝝃 = (𝑜v,𝑜 𝝎) and the time evolution of s through an interaction matrix
Ls, which depends on the selection of s. The dynamics of visual features can
be described with the following equation:

̇s = Ls
𝑜𝝃 (2.2)

2.1.1 IBVS
IBVS uses the image-plane coordinates and pinhole camera model to derive
the image Jacobian, known as the interaction matrix, and formulate the control
law. This approach directly uses visual features from the image plane to
control the robot to the desired configuration. While this method is more
robust to calibration and model errors, the main drawback is that the generated
3D trajectory is unpredictable and might be undesirable [21].

2.1.1.1 Camera Perspective Projection

The perspective projection, derived from the pinhole camera model, provides
a mathematical model representation to project 3D points in the world into 2D
points in the image plane.

Given a 3D point P = [𝑋, 𝑌, 𝑍]⊤ in the camera coordinate frame, its
projection in the image plane 𝑝 = [𝑥, 𝑦]⊤ is defined by the perspective
projection equations below.

𝑥 = 𝑋
𝑍 , 𝑦 = 𝑌

𝑍 (2.3)
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Figure 2.1: Perspective projection [22].

Considering a digital camera that uses pixel-based image sensors, these
coordinates then relate to the pixel coordinates (𝑢, 𝑣) using the camera’s
intrinsic parameters, such as focal length, principal point, and pixel size. These
parameters then form the camera intrinsic matrix as defined in eq. (2.4), where
𝑓𝑥 and 𝑓𝑦 are the focal lengths in pixel along x and y axis, and (𝑐𝑥, 𝑐𝑦) is the
pixel coordinate of the principal point.

K =
⎡⎢⎢
⎣

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤⎥⎥
⎦

(2.4)

2.1.1.2 Interaction Matrix

The interaction matrix linearly relates the spatial velocity of the camera 𝑜𝝃 =
[𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧] to the time derivative of a visual feature ̇s that can be
expressed as stated in eq. (2.2).

In this thesis, we will use the simplest image feature, which is point
features. By differentiating eq. (2.3) using the quotient rule, the derivative
of the feature in the image plane can be obtained as shown in eq. (2.5).

⎧{{
⎨{{⎩

̇𝑥 = 𝑋̇𝑍 − 𝑋𝑍̇
𝑍2 = 𝑋̇ − 𝑥𝑍̇

𝑍

̇𝑦 = 𝑌̇𝑍 − 𝑌𝑍̇
𝑍2 = 𝑌̇ − 𝑦𝑍̇

𝑍

(2.5)

Then, assuming the feature is rigidly fixed in the scene, rigid-body
kinematics is used to get the relationship with 𝑜𝝃 as defined in eq. (2.6) and
the cross product is explicitly written in eq. (2.7).

Ṗ = −v − 𝝎 × P (2.6)
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⎧{{
⎨{{⎩

𝑋̇ = −𝑣𝑥 − 𝜔𝑦𝑍 + 𝜔𝑧𝑌
𝑌̇ = −𝑣𝑦 − 𝜔𝑧𝑋 + 𝜔𝑥𝑍
𝑍̇ = −𝑣𝑧 − 𝜔𝑥𝑌 + 𝜔𝑦𝑋

(2.7)

By combining eqs. (2.3), (2.5) and (2.7), the image feature dynamics can
be obtained as follows:

⎧{{
⎨{{⎩

̇𝑥 = −𝑣𝑥
𝑍 + 𝑥 𝑣𝑧

𝑍 + 𝑥 𝑦 𝜔𝑥 − (1 + 𝑥2) 𝜔𝑦 + 𝑦 𝜔𝑧,

̇𝑦 = −
𝑣𝑦
𝑍 + 𝑦 𝑣𝑧

𝑍 + (1 + 𝑦2) 𝜔𝑥 − 𝑥 𝑦 𝜔𝑦 − 𝑥 𝜔𝑧.
(2.8)

Finally, the interaction matrix for point features can be defined in eq. (2.9).

Ls = ⎡⎢
⎣

− 1
𝑍 0 𝑥

𝑍 𝑥𝑦 −(1 + 𝑥2) 𝑦

0 − 1
𝑍

𝑦
𝑍 1 + 𝑦2 −𝑥𝑦 −𝑥

⎤⎥
⎦

(2.9)

A single point feature gives only 2 equations. To fully observe a 6-DOF
camera, at least 3 point features are needed so that the interaction matrix has
full rank. We can do this by defining s into a feature vector s = (𝑠1, 𝑠2, … , 𝑠𝑛)
and stacking the interaction matrix:

Ls =
⎡
⎢
⎢
⎢
⎣

Ls1
Ls2
⋮

Lsn

⎤
⎥
⎥
⎥
⎦

(2.10)

After obtaining L𝑠, combining eqs. (2.1) and (2.2), we obtain that the error
derivative can be written as in eq. (2.11), where L𝑒 = L𝑠.

̇e = Le
𝑜𝝃 (2.11)

Assuming 𝑜𝝃 to be the input to the robot controller and trying to achieve,
for example, an exponential decrease of the error, we can derive it in the
eq. (2.12).

𝑜𝝃 = −𝜆L+
e e (2.12)

Where L+
e is the Moore-Penrose pseudo-inverse of L𝑠. However, in real

application, it is impossible to get the L𝑒 or L+
𝑒 perfectly. Therefore, L̂+

e is
used as the symbol for the approximation of the L𝑒 and L+

𝑒 .
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𝑜𝝃 = −𝜆L̂+
𝑒 e (2.13)

2.1.2 PBVS
PBVS, also known as 3D visual servoing, minimizes the error between the
current and desired camera pose for defining s (eq. (2.14)). The pose of the
camera is typically reconstructed using a Perspective-n-Point (PnP) algorithm
for 2D-3D correspondence or, in RGB-D systems or 3D-3D correspondence
methods, by registering a live point cloud to a CAD model using ICP.

Because the pose is reconstructed in 3D, PBVS requires accurate camera
intrinsic parameters so that 2D image features can be correctly projected and
a geometric model of the target can establish 2D-3D correspondences. 3D-3D
correspondence methods will also have inaccurate 3D points if the camera is
not well calibrated [23].

The visual feature is usually represented as a translational and rotational
vector in 3D space, making the induced 3D trajectory more predictable, often
resembling a 3D straight line. Nevertheless, the object might get out of FOV
due to the lack of control over the image space. The visual feature vector is
defined as

s(𝑡) = [
𝑐∗t𝑐
𝜃u ] ∈ ℝ6 (2.14)

Where t is the translation and 𝜃u is the angle parameterization for the
rotation of the camera frame 𝑐 with respect to the reference frame 𝑐∗. Using
this definition, the desired feature value s∗ is simply the zero vector.

2.1.2.1 Interaction Matrix

For the translational part, the derivative of 𝑐∗t𝑐 is obtained by rotating the
current linear velocity into the desired frame 𝑐∗t𝑐 = Rv𝑐. For the rotation
part, the derivative of 𝜃u is ̇𝜃u = L𝜃u𝝎𝑐, where L𝜃u is defined in eq. (2.15)
below [24].

L𝜃u = I3 − 𝜃
2[u]× + ⎛⎜

⎝
1 − sinc 𝜃

sinc2 𝜃
2

⎞⎟
⎠

[u]2
× (2.15)

Putting the translation and rotation blocks together gives the whole 6x6
interaction matrix:
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Le = [ R 03×3
03×3 L𝜃u

] (2.16)

2.1.3 Hybrid VS
Hybrid visual servoing was introduced to combine the strengths of PBVS
and IBVS schemes while overcoming their individual drawbacks. There
are several approaches to implementing hybrid VS, including the switching
schemes, partitioned approach, and combined Jacobian methods.

2.1.3.1 Switching Schemes

Hybrid switched system treats IBVS and PBVS as two complementary
subsystems along with a discrete switching controller that decides when to run
each of them [25, 18]. The main goal is to leverage IBVS’s pixel-level accuracy
and PBVS’s fast global convergence while avoiding their failure modes. An
intuitive way to define the subsystem function is by monitoring two quadratic
Lyapunov functions online, which can be described as follows:

𝑉𝐼(𝑡) = 1
2‖e𝐼(𝑡)‖2, 𝑉𝑃(𝑡) = 1

2‖e𝑃(𝑡)‖2 (2.17)

where 𝑉𝐼(𝑡) and 𝑉𝑃(𝑡) define the IBVS and PBVS Lyapunov function,
respectively. While running the PBVS controller, the system will switch to
the IBVS controller whenever the IBVS Lyapunov function is higher than a
maximum acceptable feature error (𝑉𝐼(𝑡) > 𝛾𝐼). It will switch back to the
PBVS controller when the PBVS Lyapunov function is higher than a maximum
acceptable pose error (𝑉𝑃(𝑡) > 𝛾𝑃). The parameter 𝛾𝐼 and 𝛾𝑃 are user-
defined constants that are chosen conservatively based on task geometry. In
practice, these thresholds may be adjusted empirically to balance performance
and robustness.

2.1.3.2 Partitioned Approaches

This method uses a decoupled system between the translation and rotation
motion. IBVS-style feedback regulates the three translational DOF, while a
PBVS-style term drives the three rotational DOF. Hence, this method is usually
referred to as 2.5D VS. In [26], the authors use (i) image-plane coordinates
of one point and (ii) the log-depth of that point to control translation, and the
angle-axis extracted from the homography between current and desired images
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to control rotation. Because the translation interaction matrix is triangular, the
three translation equations are virtually uncoupled, and the rotation error is
expressed in 3D space, this decoupling provides straight-line camera motions
and smooth feature trajectories even with large initial displacements.

2.1.3.3 Combined Jacobian Methods

Instead of choosing different s for each DOF, a weighted combination of IBVS
and PBVS interaction matrices can be constructed as shown in eq. (2.18)
below:

Lhybrid = 𝑊ILIBVS + 𝑊PLPBVS (2.18)

Where 𝑊𝐼 and 𝑊𝑃 are diagonal weight matrices that satisfy 𝑊𝐼 +𝑊𝑃 = 1
and can be varied smoothly over time, depth, or feature visibility, enabling
continuous transition from pure IBVS to pure PBVS and back. Because Lhybrid
remains a full 6x6 full-rank matrix (assuming the original L’s are full-rank) and
each weight is strictly positive, Lhybrid remains non-singular, so the classical
pseudo-inverse controller in eq. (2.13) can be applied without modification.

2.2 Point Clouds
A 3D Point cloud is a collection of points P = {p𝑖}𝑁

𝑖=1 where each 𝑝𝑖 =
[𝑥𝑖, 𝑦𝑖, 𝑧𝑖]⊤ ∈ ℝ3. Combining these points together describe the visible
geometry of a scene. In this project, point clouds generated by an RGB-D
camera are used to estimate the pose of the docking station, which is later
refined and employed by the MPC. Raw point clouds are usually noisy and
therefore preprocessing techniques are required to filter the noise and outliers.

2.2.1 Down-Sampling
RGB-D cameras are capable of producing low-resolution point clouds of 640
x 480, resulting in 307,200 points. Processing every point can significantly
increase computational resources since some operations (e.g., thresholding)
have O(n) complexity, and more complex algorithms (like K-nearest-neighbor
filtering) have O(nk).

One method to reduce the number of points in a point cloud while retaining
the information is to use voxel grid downsampling. It is performed by using an
octree to segment the point cloud into multiple cube regions (voxels). All the
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Figure 2.2: 3D voxel grid downsampling process schematic[27].

points in each voxel will be reduced into the one center-of-mass point cloud,
resulting in a smaller-sized point cloud but still precise enough to work with.

2.2.2 Plane Segmentation with RANSAC
Plane segmentation is an important part for preprocessing point clouds,
especially in indoor environment where planar structures such as walls, floors,
and tables are abundant. Planar structures are able to be computed by
depth information using depth sensors like Time-of-Flight (TOF) sensors that
generate 3D point clouds in real-world coordinate [28].

Plane segmentation methods can be performed with 3 approaches: edge-
based, normal-based, and RANSAC segmentation. Edge-based segmentation
has the fastest computation time but the worst accuracy. Normal-based
segmentation has proven more reliable but slower than edge based method.
RANSAC can provide more robust plane segmentation with the highest time
consumption [29, 30, 31].

A plane in 3D space can be represented as eq. (2.19) or in normalized form
eq. (2.20), where 𝑛(𝑎, 𝑏, 𝑐) is unit normal vector, 𝑝(𝑥, 𝑦, 𝑧) is any point on the
plane and 𝑑 is the distance from origin to plane.

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 (2.19)

n⊤p + 𝑑 = 0, ‖n‖ = 1 (2.20)

n = (p𝑏 − p𝑎) × (p𝑐 − p𝑎)
‖(p𝑏 − p𝑎) × (p𝑐 − p𝑎)‖ , 𝑑 = −n⊤p𝑎 (2.21)

By randomly selecting minimum number of points in the scene (3 non-
collinear points to define a plane), the candidate plane parameters can be
obtained eq. (2.21). Then, we find the inlier using eq. (2.22) for every other
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points in the point cloud. A point is an inlier if the is 𝛿𝑖 < 𝜏, where 𝜏 is the
threshold. After N iterations, the plane model will be selected with the highest
number of inliers [30].

𝛿𝑖 = |n⊤p𝑖 + 𝑑| (2.22)

2.3 Pose Estimation

2.3.1 Correspondence-based Methods
2.3.1.1 2D and 3D Descriptors

Correspondence-based pose estimation methods rely on defining geometrical
relationships between a known object model and observed data (e.g., image
features or 3D points) to recover the rigid transform T = [R|t] ∈ 𝑆𝐸(3)
between the sensor (camera) and the object. The main difficulty therefore
shifts from solving for T itself to establishing reliable correspondences. The
pose can be recovered analytically or with a few iterations when a set of at
least three or four non-coplanar correspondences is available, and additional
correspondences could be used to increase robustness towards noise and
outliers.

The core approach is divided into three steps. First, extracting local
descriptors around keypoints. To find the key descriptors, Scale Invariant
Feature Transform (SIFT) [32] and Speeded-Up Robust Features (SURF) [33]
are widely used for RGB images. Whereas on raw point clouds, 3D descriptors
like Fast Point Feature Histograms (FPFH) or Signature of Histograms of
OrienTations (SHOT) are preferred. The second step is matching: each
descriptor is paired with its nearest neighbor in the model, making a set of
correspondences. The third step is solving the pose to recover a 6-DOF rigid
body transform that has the most matched pairs.

When only an image is available, 2D descriptors computed in the image
plane will be paired to a known 3D model, and the PnP solvers calculate the
estimated camera pose. Because reprojection relies on accurate intrinsics,
calibration errors disproportionately affect PnP solutions. That is why PnP
solvers are usually used together with RANSAC.

Similarly, with RGB-D image, because both the scene and the reference
cloud live in the same Euclidean space, correspondences are matched directly
in ℝ3, removing the perspective coupling inherent in 2D imagery. The
estimated pose can then be obtained either with a closed-form absolute
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orientation solution (e.g., Horn’s method), Singular value decomposition
(SVD), or by performing a consensus test such as SAC-IA [34].

2.3.1.2 ICP

Iterative Closest Point (ICP) algorithm has been a common technique for
3D point cloud registration since it was introduced in 1992[35]. As
a part of correspondence-based methods, ICP formulates alignment by
performing iterative procedure to find the correspondences and compute rigid
transformation that minimizes a chosen geometric error between 2 partially
overlapping point clouds. The optimization repeats until the point clouds
are well-aligned. The objective is monotonically non-increasing with each
iteration and will eventually converges to a fixed point (generally a local
minimum).

We now explain the basic point-to-point ICP formulation. LetP = {p𝑖}𝑁
𝑖=1

denote the source cloud and Q = {q𝑖}𝑀
𝑖=1 to be the target cloud. The goal is

to find the rigid transformation T = (R, t) that minimizes alignment error. At
iteration 𝑘, every transformed point Rkpi+tk find its closest point in Q (e.g, via
kd-tree/octree), yielding correspondence sets of pair C𝑘 = (p𝑖, q𝑚(𝑖)). Next,
the alignment step estimates the transformation by minimizing eq. (2.23).

(R𝑘+1, t𝑘+1) = arg min
R,t

∑
(p𝑖,q𝑚(𝑖))∈C𝑘

∥Rp𝑖 + t − q𝑚(𝑖)∥
2 (2.23)

A common method to find the optimal R and t is by using the SVD method.
First the point sets are centered to the centroid of each source p̄ and target q̄
points sets. Then, a cross-covariance matrix is formed as sum of outer products
of the centered corresponding pairs as written in eq. (2.24), where ̃pi and ̃qi
denotes centered source and target cloud, respectively.

H =
𝑁

∑
𝑖=1

p̃𝑖q̃⊤
𝑖 (2.24)

Performing SVD to the matrix H gives 3 matrices (eq. (2.25) that can be
used to obtain the R and t. The optimal rotation R can be obtained with
eq. (2.26) and t with eq. (2.28). Because R = VU⊤ can yield an improper
rotation (a reflection) when 𝑑𝑒𝑡(VU)⊤ = −1, a diagonal correction is inserted
to enforce a proper rotation (S).

H = U�V⊤ (2.25)
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S = diag(1, 1, sign(det(VU⊤))) (2.26)

R𝑘+1 = VSU⊤ (2.27)

tk+1 = q̄ − Rk+1p̄ (2.28)

Finally, checking the convergence is required to know if another iteration is
required or not by checking the Mean Squared Error (MSE) of the tranfsormed
point cloud.

2.3.1.3 GICP

While standard ICP minimizes a point-to-point Euclidean error with a
closed-form SVD update, Generalized Iterative Closest Point (GICP) [36]
can be viewed as a continuous generalization of ICP that adapts its
weighting per correspondence using local surface covariances and minimizes
a Mahalanobis-weighted error. Point-to-point, point-to-plane, and plane-to-
plane arise as limiting cases of this single objective; GICP does not explicitly
choose a mode, but its local covariances make it behave like the most
appropriate variant across different parts of the scene. GICP can improve
stability, widens the basin of convergence, and reduces iteration to reach local
minimum.

The general working principle is similar with point-to-point, starting with
finding correspondences for the transformed source points. Then, GICP
estimate a 3 × 3 covariance that captures local surface shape from a 𝑘-NN
principal component analysis (PCA). Let U = [t1 t2 n] be the orthonormal
basis (two tangents t1, t2 and normal n). A common construction is

C = U diag(𝜎2
𝑡 , 𝜎2

𝑡 , 𝜎2
𝑛) U⊤ + 𝜖I, (2.29)

with 𝜎2
𝑛 ≪ 𝜎2

𝑡 and a small 𝜖 > 0 for conditioning. Denote by C𝑝,𝑖 and C𝑞,𝑖
the covariances at p𝑖 and q𝑚𝑘(𝑖), respectively.

Instead of minimizing the sum of squared Euclidean distances eq. (2.23),
GICP minimizes Mahalanobis-weighted residuals using per-point covari-
ances:
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(R𝑘+1, t𝑘+1) = arg min
R,t

∑
(p𝑖,q𝑚𝑘(𝑖))∈C𝑘

r⊤
𝑖 W𝑖(R) r𝑖,

W𝑖(R) = (C𝑝,𝑖 + RC𝑞,𝑖R⊤)−1.
(2.30)

When C𝑝,𝑖 and C𝑞,𝑖 are isotropic (𝜎2
𝑡 = 𝜎2

𝑛), the objective eq. (2.30)
reduces to point-to-point ICP objective.

GICP then substitute the SVD blocks (eqs. (2.24) to (2.26) and (2.28) by
linearizing the residuals around current pose 𝛿x = [𝛿𝜽, 𝛿t] ∈ ℝ6 by solving
the Gauss–Newton normal equations:

( ∑
𝑖

J⊤
𝑖 W𝑘

𝑖 J𝑖)𝛿x = − ∑
𝑖

J⊤
𝑖 W𝑘

𝑖 r𝑘
𝑖 , (2.31)

.
The pose is then updated on SE(3) using the linearized 𝛿𝑥:

R𝑘+1 = exp([𝛿𝜽]×) R𝑘, t𝑘+1 = t𝑘 + 𝛿t. (2.32)

2.3.1.4 Globally Optimal-ICP (GO-ICP)

Globally optimal-ICP (GO-ICP) [37] performs branch-n-bound (BnB) algo-
rithm over the whole SE(3) space to find a global minimum alignment. It
eliminates the need for a good initial estimate by systematically partitioning
the rotation and translation domains and bounding the lowest possible error in
each partition.

GO-ICP does a global search using BnB for each domain. Rotation space
SO(3) is parameterized in a radius-𝜋 ball, represented using the angle-axis
vector r and Rodrigues’ formula eq. (2.33) below to obtain Rr.

Rr = exp([r]×) = I + [r]× sin ‖r‖
‖r‖ + [r]2

× (1 − cos ‖r‖)
‖r‖2 (2.33)

For any sub-cube, GO-ICP calculates how much a point can move within
that cube. The rotation and translation uncertainty are defined in eqs. (2.34)
and (2.36), with 𝜎𝑟 and 𝜎𝑡 as the radius of the rotation ball and half-size of
translation cubes.

‖Rrx − Rr0
x‖ ≤ 𝑔𝑟(x) (2.34)
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where 𝑔𝑟(𝑥) equals to:

𝑔𝑟(𝑥) = 2 sin (min(√3𝜎𝑟/2, 𝜋/2)) ‖x‖ (2.35)

‖(x + t) − (x + t0)‖ ≤ √3𝜎𝑡 (2.36)

These inequalities are used to filter the transformed points to be inside a
ball centered at Rr0x + t0, with radius 𝑔𝑟(x) + 𝑔𝑡. Therefore, for each data
point x𝑖, one can obtain the upper and lower error bound of its closest-point
distance. The upper bound can be calculated by calculating the closest-point
distance at the cell center eq. (2.37) and the lower bound tells that the error
can’t get lower than subtracting the uncertainty radius eq. (2.38).

𝑒𝑖 = DT(R0x𝑖 + t0) (2.37)

𝑒𝑖 = max {𝑒𝑖 − (𝑔𝑟(x𝑖) + 𝑔𝑡), 0} . (2.38)

Summing squares across points gives L2 error bounds for the whole cell:

𝐸 = ∑
𝑖

𝑒2
𝑖 , 𝐸 = ∑

𝑖
𝑒2
𝑖 . (2.39)

GO-ICP uses nested BnB to search the best pose estimate effectively
by running an outer BnB for rotation, and an inner BnB for translation is
built inside each of the outer BnB. Then, those L2 error bounds (𝐸̄ and 𝐸)
are recomputed at every node in both outer (rotation) and inner (translation)
Branches. Whenever a new best (lowest) error is obtained, an ICP will be
executed to further boost the process. However, if new error is less than the
best error, the branch will be pruned. The iteration will stop after the best error
is lower than the MSE threshold.
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Figure 2.3: ICP used within BnB searches to speed up the process.
(source:[37])

Finally, classic ICP minimizes the sum of squared closest-point residuals
over all data points, so even a small fraction of outliers can affect the result.
GO-ICP provides trimming features by keeping only the best-fitting K points
and discarding the rest. The trimming objective is defined in eq. (2.40), where
𝑟 ∈ [0, 1] as the trimming percentage (trim factor):

𝐸trim(R, t) =
𝐾

∑
𝑖=1

𝑒2
(𝑖), 𝐾 = (1 − 𝑟)𝑁. (2.40)

2.3.2 Template-Based Methods
The template-based method follows multiple stage pipeline consist of feature
extraction, template matching, and pose inference. In the feature extraction
phase, visual descriptors such as edge information, vertices, normal vector,
texture patterns, or learned representations from deep neural network from
the input image and template database are computed. These templates are
pre-rendered or photographed from different viewpoints during an offline
phase, using either manual captures or synthetic CAD renders. In the online
phase, the template scene are matched with the scene image by maximizing a
similarity metric[38].

One of the classical algorithm that utilize this method is LINEMOD [39].
LINEMOD combines silhouette gradient orientations from 2D images and
surface normal orientation from depth images to represent object templates.
From that, lookup tables are created for similarity indexing. Like other
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template-based methods, LINEMOD need quantities of templates to fully
cover an object. Nevertheless, object with symmetric structures (e.g, cylinder,
cone, etc.) will be seen identical if rotated around the rotational axis. Also,
templates captured from nearby viewpoints tend to look almost identical.
From these problems, a single object can trigger multiple templates at once.
LINEMOD tackles this by choosing every match with a similarity score above
a threshold, but it doesn’t actually tell how many separate object instances are
present [38].

2.3.3 Voting-Based Methods
Voting-based methods are known for their robustness to noisy data, partial
occlusion and outliers. The main idea behind this method is to treat pose
estimation as a consensus-building process. Features extracted from input
images—such as edges, descriptors, keypoints—are used to give votes for
candidate pose hypotheses in a parameterized space. The pose with highest
accumulation (modes in that space) will be selected as the output. This
approach is inspired from Hough transform, originally developed to detect
lines and circles in images, which has been adapted to handle more complex
transformation for pose estimation.

One well-known algorithm that uses voting-based pose estimation is the
extension of classical Hough Transform, that is Generalised Hough transform
(GHT) [40]. The GHT enables the object detection by mapping the features
from the image space to parameter space representing possible object poses.
Each features votes for candidate pose based on a pre-computed reference
table, and peaks in the accumulator correspond to the most likely poses.

In learning-based voting methods, a deep neural network is trained to
enable each pixel / point predicts the key element of an object should be
located in 3D coordinates of canonical keypoints. PVNet [41] takes an image
as the input and feed it through a convolutional encoder-decoder network
that predicts, for every foreground pixel, a set of unit direction vectors
pointing towards six to eight pre-defined keypoints on the object’s CAD
model. At inference time these vectors are group with a differentiable mean-
shift procedure; The resulting density peaks shows the 2D image locations of
the keypoints. Finally, a PnP solver construct the full 6-DOF pose. Another
learning-based algorithm that uses voting method is PVN3D [42], it extends
the same idea as PVNet but only uses RGB-D camera input. Each 3D points
predicts 3D vectors pointing toward keypoints in 3D space with a confidence
score.
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2.4 Quaternion
There are multiple common parameterization of a rigid body’s orientation—
Euler angles, rotation matrices, and quaternions. In this thesis, we adopt the
quaternion representations since the attitude definition of free flyer model
in section 3.2 is defined using quaternion operations. Quaternion is a four-
parameter unit quantity, we use the scalar-vector (𝑤, 𝑥, 𝑦, 𝑧) convention,
defined as follows:

q = [𝑤 𝑥 𝑦 𝑧]⊤
(2.41)

Where q𝑣 represents the vector part and 𝑞𝑤 represents the scalar. Most of
the quaternion formulas and definitions are taken from [43].

2.4.1 Main Quaternion Properties
2.4.1.1 Sum

The sum of quaternion has commutative and associative properties. Therefore,
it is a straightforward operation. Let q1, q2, and q3 as 2 different quaternions:

q1 + q2 = q2 + q1
q1 + (q2 + q3) = (q1 + q2) + q3

(2.42)

2.4.1.2 Product

Quaternion product is represented with ⊗ (𝑝 and 𝑞 are quaternions):

p ⊗ q =
⎡⎢⎢⎢⎢
⎣

𝑝𝑤𝑞𝑤 − 𝑝𝑥𝑞𝑥 − 𝑝𝑦𝑞𝑦 − 𝑝𝑧𝑞𝑧
𝑝𝑤𝑞𝑥 + 𝑝𝑥𝑞𝑤 + 𝑝𝑦𝑞𝑧 − 𝑝𝑧𝑞𝑦
𝑝𝑤𝑞𝑦 − 𝑝𝑥𝑞𝑧 + 𝑝𝑦𝑞𝑤 + 𝑝𝑧𝑞𝑥
𝑝𝑤𝑞𝑧 + 𝑝𝑥𝑞𝑦 − 𝑝𝑦𝑞𝑥 + 𝑝𝑧𝑞𝑤

⎤⎥⎥⎥⎥
⎦

, (2.43)

or the operation can also be divided into scalar and vector parts:

p ⊗ q = [ 𝑝𝑤𝑞𝑤 − p⊤
𝑣 q𝑣

𝑝𝑤q𝑣 + 𝑞𝑤p𝑣 + p𝑣 × q𝑣
] (2.44)

Since cross-product operations are involved, the quaternion product is not
commutative generally. However, if p𝑣 × q𝑣 = 0 which indicates if both
vector parts are parallel p𝑣‖q𝑣; This includes the special case where one or
both vector part is zero (a real quaternion), but it’s not limited to it. The
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quaternion product is commutative. Furthermore, quaternion product is also
associative and distributive over the sum.

2.4.1.3 Conjugate

The quaternion conjugate is defined by

q∗ = [ 𝑞𝑤
−q𝑣

] (2.45)

.

2.4.1.4 Norm

The norm of a quaternion is defined by:

‖q‖ = √𝑞2𝑤 + 𝑞2𝑥 + 𝑞2𝑦 + 𝑞2𝑧 (2.46)

2.4.1.5 Inverse

The inverse of quaternion can be computed as:

q−1 = q∗/‖q‖2 (2.47)

However, for unit quaternion, since ‖q‖ = 1, the inverse is equal to the
conjugate itself, q−1 = q∗.

2.4.1.6 Unit Quaternion

A unit quaternion satisfies the normalization constraint and in practice is re-
normalized as q = q/‖q‖ to control numerical drift. Unit quaternions can be
written in the form below [43].

q = [ 𝑐𝑜𝑠𝜃
u 𝑠𝑖𝑛𝜃] (2.48)

2.4.2 Rotations in 3D
A (proper) 3D rotation is a linear map that preserves lengths and orientation.
The set of all such rotations is the special orthogonal group

𝑆𝑂(3) ≜ { 𝑅 ∈ ℝ3×3 ∣ 𝑅⊤𝑅 = 𝐼, det 𝑅 = 1 }.
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Common parameterizations of rotations include the Direction Cosine
Matrix (DCM), Euler angles, and unit quaternions.

2.4.3 Direction Cosine Matrix (DCM)
To represents the attitude of a spacecraft, DCM can be used to convert
quaternion into rotation matrix since we are dealing with multiple reference
frames.

C(q) = (𝑞2
𝑤 − q⊤

𝑣 q𝑣) 𝐼3 + 2 q𝑣q⊤
𝑣 − 2 𝑞𝑤 [q]×

=
⎡⎢⎢
⎣

1 − 2(𝑞2
𝑦 + 𝑞2

𝑧) 2(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞𝑤) 2(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞𝑤)
2(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞𝑤) 1 − 2(𝑞2

𝑥 + 𝑞2
𝑧) 2(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞𝑤)

2(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞𝑤) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞𝑤) 1 − 2(𝑞2
𝑥 + 𝑞2

𝑦)

⎤⎥⎥
⎦

(2.49)

The symbol [q]× on eq. (2.49) means a skew-symmetric operator, defined
as follows:

[a]× =
⎡⎢⎢
⎣

0 −𝑎𝑧 𝑎𝑦
𝑎𝑧 0 −𝑎𝑥

−𝑎𝑦 𝑎𝑥 0

⎤⎥⎥
⎦

(2.50)

This matrix representation allows the cross product of two vectors to be
computed as [a]×b = a × b.

2.4.4 Conversions Between Representations
To convert from quaternion to Euler, we can use the following convention.

⎡⎢⎢
⎣

𝜙
𝜃
𝜓

⎤⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

atan2(2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 1 − 2(𝑞2
𝑥 + 𝑞2

𝑦))

−𝜋
2 + 2 atan2(√1 + 2(𝑞𝑤𝑞𝑦 − 𝑞𝑥𝑞𝑧), √1 − 2(𝑞𝑤𝑞𝑦 − 𝑞𝑥𝑞𝑧))

atan2(2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦), 1 − 2(𝑞2
𝑦 + 𝑞2

𝑧))

⎤
⎥
⎥
⎥
⎦

(2.51)
Note that 𝜙, 𝜃, 𝜓 are roll, pitch, and yaw angles, respectively.
Conversely, to obtain Quaternion from Euler angles (in Z-Y-X sequence),

the following equations can be used:
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⎡
⎢⎢⎢⎢
⎣

𝑞𝑤
𝑞𝑥
𝑞𝑦
𝑞𝑧

⎤
⎥⎥⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

𝑐𝑜𝑠𝜙
2 𝑐𝑜𝑠𝜃

2 𝑐𝑜𝑠𝜓
2 + 𝑠𝑖𝑛𝜙

2 𝑠𝑖𝑛𝜃
2 𝑠𝑖𝑛𝜓

2
𝑠𝑖𝑛𝜙

2 𝑐𝑜𝑠𝜃
2 𝑐𝑜𝑠𝜓

2 − 𝑐𝑜𝑠𝜙
2 𝑠𝑖𝑛𝜃

2 𝑠𝑖𝑛𝜓
2

𝑐𝑜𝑠𝜙
2 𝑠𝑖𝑛𝜃

2 𝑐𝑜𝑠𝜓
2 + 𝑠𝑖𝑛𝜙

2 𝑐𝑜𝑠𝜃
2 𝑠𝑖𝑛𝜓

2
𝑐𝑜𝑠𝜙

2 𝑐𝑜𝑠𝜃
2 𝑠𝑖𝑛𝜓

2 − 𝑠𝑖𝑛𝜙
2 𝑠𝑖𝑛𝜃

2 𝑐𝑜𝑠𝜓
2

⎤
⎥
⎥
⎥
⎥
⎦

(2.52)

2.4.5 Quaternion Time Derivatives
By representing small perturbations in a vector space, we can derive the time
derivative directly from first principles. Let the nominal state to be q(𝑡) and
the perturbed state to be q̃ = q(𝑡 + Δ𝑡). By definition of the derivative:

q̇(𝑡) = lim
Δ𝑡→0

q̃ − q(𝑡)
Δ𝑡 (2.53)

Then, with

𝜔L(𝑡) ≜ 𝑑𝜙L(𝑡)
𝑑𝑡 ≜ lim

Δ𝑡→0

Δ𝜙L
Δ𝑡 , (2.54)

where Δ𝜙L is a local angular perturbation, corresponds to the angular rates
vector q as follows:

q̇ = lim
Δ𝑡→0

q ⊗ ΔqL − q
Δ𝑡

= lim
Δ𝑡→0

q ⊗ ([ 1
Δ𝜙L/2] − [1

0])

Δ𝑡

= lim
Δ𝑡→0

q ⊗ [ 0
Δ𝜙L/2]

Δ𝑡

= 1
2 q ⊗ [ 0

𝜔L
]

(2.55)

Then, omega operator Ω(𝜔) can be defined as:

𝛀(𝝎) ≜ [𝝎]𝑅 = [ 0 −𝝎⊤

𝝎 −[𝝎]×] =
⎡⎢⎢⎢⎢
⎣

0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧
𝜔𝑥 0 𝜔𝑧 −𝜔𝑦
𝜔𝑦 −𝜔𝑧 0 𝜔𝑥
𝜔𝑧 𝜔𝑦 −𝜔𝑥 0

⎤⎥⎥⎥⎥
⎦

, (2.56)

making the final form of quaternion derivative to be:
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̇𝐪 = 1
2𝛀(𝝎)q (2.57)

2.4.6 Distance Between 2 Quaternions
Let q1, q2 ∈ ℍ be unit quaternions in scalar–first form that represent 3D
orientations. A principled “distance” between orientations is the geodesic
distance on 𝑆𝑂(3), i.e., the minimal rotation angle that maps one attitude to the
other. The angle 𝜃 of rotation required to get from one orientation to another
is given by the formula below:

𝜃 = arccos (2⟨q1, q2⟩2 − 1) (2.58)

where ⟨q1, q2⟩ denotes the inner product between two quaternions:

⟨q1, q2⟩ = 𝑞1𝑤𝑞2𝑤 + 𝑞1𝑥𝑞2𝑥 + 𝑞1𝑦𝑞2𝑦 + 𝑞1𝑧𝑞2𝑧 (2.59)

2.5 Model Predictive Control (MPC)
MPC is a well-known optimization-based control technique that was originally
used in petro-chemical process regulation for slow dynamics. However, its
defining idea has proved for its accuracy, safety, and robustness in robotics.
MPC optimize a finite-horizon model at every sampling instant and apply
only the first control input to the system. The process is repeated at the
next sampling instant to allow the controller continuously adapt to the true
system state until the system has converged to the target state[15]. Unlike
classical controllers that treat limits as afterthoughts, MPC incorporates them
as algebraic conditions inside the optimization itself. At each sampling instant,
the solver searches for a control sequence that minimizes both the cost and
satisfies the defined rules/constraints.

A discrete-time nonlinear system can be expressed through equations
below:

x𝑘+1 = 𝑓 (x𝑘, u𝑘) (2.60)

where x𝑘 ∈ ℝ𝑛 and u𝑘 ∈ ℝ𝑚 is the system state and control input at
time step 𝑘. 𝑓 (x𝑘, u𝑘) is the state-transition function. MPC builds upon the
principles of linear-quadratic optimal control theory. To understand MPC’s
foundation, we examine the derivation of optimal control laws using quadratic
cost functions. The key distinction between traditional Linear–Quadratic
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Regulator (LQR) and MPC lies in the explicit definition of constraints, which
were discussed earlier.

The optimization objective is formulated using a cost function that
penalizes deviations of the predicted state and control input from their desired
references. The optimization problem can be formulated as in eq. (2.61). The
terms inside the summation is called stage (running) cost and term at the
final horizon called terminal cost. The stage cost shapes behavior along the
horizon, while the terminal cost penalizes the end state (often approximating
the infinite-horizon cost) and helps with stability.

𝐽∗
𝑁 = min𝑥,𝑢

𝑁−1
∑
𝑘=0

[x̂𝑇
𝑘 Q ̂x𝑘 + û𝑇

𝑘 Rû𝑘] + x̂𝑇
𝑁Px̂𝑁 ,

s.t.
x𝑘+1 = 𝑓 (xk, uk), ∀𝑘 = 0, … , 𝑁 − 1,
x𝑘 ∈ X , ∀𝑘 = 0, … , 𝑁 − 1,
x𝑘 ∈ U , ∀𝑘 = 0, … , 𝑁 − 1,
x0 = xinit,
x𝑁 = X𝑓

(2.61)

Where x̂𝑘 = x𝑘 − x𝑟 is error of current with reference state and û𝑘 =
u𝑘 − u𝑟 for the control input. Q and P are the positive semi-definite weight
matrices that penalize the state and input error, and R is the positive definite
weight matrix that penalize the control effort. The defined constraints enforce
dynamic feasibility, keep all predicted states and inputs within the constraints
X and U (defined in eq. (2.62), the initial state will be used as the state on the
first time step, and the final step always follows the constraint X𝑓 .

The optimization problem above is solved at every sampling instant. After
applying the predicted control input u0

∗ to the system, the horizon recedes
and the optimization is repeated with updated state measurements. This is
what makes this finite-horizon optimal control into MPC.

X = {x ∈ ℝ𝑛𝑥 ∶ 𝑥𝑚𝑖𝑛 ≤ x ≤ 𝑥𝑚𝑎𝑥},
U = {u ∈ ℝ𝑛𝑢 ∶ 𝑢𝑚𝑖𝑛 ≤ u ≤ 𝑢𝑚𝑎𝑥}

(2.62)

X and U are called hard constraints because it must be respected at all
times, it is typically used for safety or to to define hardware or critical operating
limits. On the contrary, soft constraints can be violated if needed without
severe consequences. For example, to change this constraint
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𝑎⊤𝑧 ≤ 𝑏 , (2.63)

into a soft constraint, we can introduce a non-negative slack variable 𝜁 ≥ 0
so the new constraint is modified into

𝑎⊤𝑧 ≤ 𝑏 + 𝜁 (2.64)

To allow the solver to optimize the slack variable, one can add a positive
slack cost 𝜎(𝑠) into the cost function. The common cost includes the linear
and quadratic cost to give a penalty that increases rapidly with 𝜁 . The cost
function for slack variable is defined as follows:

𝜎(𝜁) = 1
2𝜁⊤𝑍𝜁 + 𝑧⊤𝜁 . (2.65)

2.6 Related work
[44] proposed a two-step vision-based docking system with a hybrid VS to
enable an autonomous chaser to mate with a target port. A multi-scale template
matcher is used to detect the reflective marker, while a tracker keeps the
marker locked in real time. During the coarse-alignment phase, the author
applies direct VS: the raw pixel offset of the marker’s centroid is mapped
through inverse tangent equations to yaw and pitch-rate commands, aligning
the camera without estimating depth or interaction matrix. Once the target
is aligned, the control switches to IBVS, tracking four retro-reflector points.
However, the approach is sensitive to different lighting conditions and requires
synthetic templates or markers.

[14] presents FoundationPose, a unified framework that uses an RGB-D
camera to obtain 6-DOF pose estimation and tracking of novel objects without
prior training. It operates in both model-based mode (when a textured CAD
model is available) and few-shot model-free mode (when only a small set of
reference images is provided). The method bridges these modes using a neural
implicit representation for novel-view synthesis, employing a transformer-
based architecture with contrastive learning formulation trained on large-scale
synthetic data aided by Large language model (LLM).

The pose estimation process first initializes multiple hypotheses uniformly
around the object, which are then refined by a learned refinement network.
After refinement, a pose selection module predicts their scores and selects
the best pose as the output. A key limitation is high computational cost, the
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GPU-intensive neural rendering and refinement of hypotheses at every frame
make the method unsuitable for development on resource-constrained onboard
computers.

Another research by Gans and Hutchinson (2007) [18] proposed a hybrid
switched-system VS framework combining PBVS and IBVS to improve
stability across a wide range of poses. This method alternates between PBVS
and IBVS mode by monitoring two Lyapunov functions—one defined on the
image-feature error (IBVS) and one on the pose error (PBVS). The controller
switches when either error crosses a user-defined threshold, creating switching
surfaces that bring the state to a safe rectangle in a common error space. To
mitigate chattering and abrupt switching near the boundaries, they introduced
time-varying scalar gains that slow the controller as it approaches a surface.
However, the framework inherits common issues associated with Image-Based
Visual Servoing (IBVS), such as local minima or singularities in the control
law, and it may switch indefinitely, potentially converging to an accumulation
point that is not the intended goal.
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Chapter 3

System Dynamics

In this chapter, the system dynamics and free-flyer model used in this work are
presented. It starts with the definition of the coordinate system and reference
frames to describe the robot’s motion and interaction with the environment.
Then, the mathematical formulation of the 3-DOF free-flyer is described,
including its rigid-body dynamics and thruster configuration.

3.1 Coordinate System
This thesis adopts a right-handed ENU convention for most of the reference
frames. Reference frames define coordinate representations of vectors,
enabling consistent transformations between them.

The global inertial frame, denoted F𝑚𝑎𝑝, is fixed to the world and serves
as the parent of all other frames. The robot base frame F𝑏𝑎𝑠𝑒 is the child frame
of map and attached at the centroid of robot’s base. The camera link frame
F𝑐𝑎𝑚 is rigidly mounted at the top of the robot, oriented such that the camera
faces backward relative to the base 𝑥 axis. The transformation in eq. (3.1)
describes the pose of the camera frame expressed in the base frame and is
used to transform point cloud data to the map frame.

Finally, the camera optical frame F𝑜𝑝𝑡𝑖𝑐𝑎𝑙 follows the standard machine-
vision convention: +𝑥 to the right in the image, +𝑦 down, and +𝑧 along the
viewing direction.

𝑐𝑎𝑚T𝑏𝑎𝑠𝑒 =
⎡
⎢
⎢
⎢
⎣

−1 0 0 −0.1
0 −1 0 0
0 0 1 0.5
0 0 0 1

⎤
⎥
⎥
⎥
⎦

(3.1)



32 | System Dynamics

Figure 3.1: simplified TF tree of the system.

Figure 3.2: Visualization of the coordinate system.

3.2 Free-Flyer Modeling (3-DOF)
The dynamics of the free-flyer robot have to be defined in order to formulate
the MPC. The rigid-body dynamics that form the basis for the equations of
motion of a thruster-controlled spacecraft are discussed in [45]. In this model,
each thruster is assumed to be one-directional, requiring two thrusters in a
coaxial configuration to generate bidirectional force along the given axis.

Since this thesis considers a simplified version of the spacecraft
constrained to planar motion, we can redefine the dynamics by setting the
forces and torques acting on the unused DOF to zero. The planar spacecraft
model therefore has 3-DOF—two translational DOF within the plane and one
rotational DOF corresponding to yaw about the Z axis. Accordingly, the
thruster body force F and torque 𝝉 simplify into:
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F = [𝐹𝑥 𝐹𝑦 0]𝑇

𝝉 = [0 0 𝜏𝑧]𝑇 (3.2)

Figure 3.3: Thruster input mapping and configuration of the free-flyer.

Our robot is equipped with eight thrusters, paired into four control inputs
such that two opposing thrusters shared a single input (𝑢𝑖 ∈ [−1, 1]), where
𝑖 denotes the pair index. Defining the four thrust directions to be stacked as
columns of the matrix D = [d1 … d4] ∈ ℝ2×4, the lever arms are collected
as 𝐿 = [l1 … l4] ∈ ℝ1×4, 𝛼 as the distance from robot’s COM perpendicular
to thruster axis, and the control input as u = [u1 … u4]⊤, the net body-frame
force is written below:

Fbody = Du = [1 1 0 0
0 0 1 1]

⎡
⎢
⎢
⎢
⎣

𝑢1
𝑢2
𝑢3
𝑢4

⎤
⎥
⎥
⎥
⎦

(3.3)
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𝝉 = 𝐋𝐮 = [𝜏𝑧] = 𝑙𝑎𝑟𝑚 [1 −1 1 −1]
⎡
⎢
⎢
⎢
⎣

𝑢1
𝑢2
𝑢3
𝑢4

⎤
⎥
⎥
⎥
⎦

(3.4)

Also, the quaternion now can be represented only with 𝑞𝑤 and 𝑞𝑧 (refer
eq. (3.5)). By that, the DCM (C(𝜓)) can also be represented as in eq. (3.6).

q = [𝑤 𝑥 𝑦 𝑧]⊤ = [𝑐𝑜𝑠(𝜓/2) 0 0 𝑠𝑖𝑛(𝜓/2)]⊤
(3.5)

C(𝜓) =
⎡⎢⎢
⎣

cos 𝜓 − sin 𝜓 0
sin 𝜓 cos 𝜓 0

0 0 1

⎤⎥⎥
⎦

(3.6)

3.2.1 Rigid-Body Dynamics
The dynamics of the spacecraft is derived using the Newton-Euler method,
which obtains the rigid-body equations of motion by applying Newton’s law
to translation and Euler’s equation to rotation. The state vector for the free
flyer consist of four components eq. (3.7)

x =
⎡
⎢
⎢
⎢
⎣

p
v
q
𝝎

⎤
⎥
⎥
⎥
⎦

∈ ℝ3 × ℝ3 × 𝕊3 × ℝ3 (3.7)

The translational kinematics of a rigid body must be described. p
represents the position vector expressed in the inertial frame. The kinematics
are written as follows:

ṗ = v. (3.8)

The kinetic equation is also modeled with respect to the inertial frame. The
time derivative of linear momentum equals the net external force according to
Newton’s Second Law, as shown below:

𝑚 ̇v = F. (3.9)

To use eq. (3.9), the force at body-frame must be converted into the inertial
frame using DCM:
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F = C(𝜓)⊤Fbody. (3.10)

Combining eqs. (3.3), (3.9) and (3.10) yields the final form of v̇:

v̇ = 1
𝑚C(𝜓)⊤Du. (3.11)

To define the attitude kinematics q̇, we can use the quaternion derivation
from section 2.4.5. The attitude kinetics can be derived also from Newton’s
second law of motion for a rigid-body:

𝝉 = J𝝎̇ + [𝝎]× × (J𝝎) ⟹ 𝝎̇ = J−1(𝝉 − [𝝎]×J𝜔). (3.12)

Where J is the inertia and � is the angular velocity. The complete equations
of motion for the thruster-controlled spacecraft are presented below.

ṗ = v

v̇ = 1
𝑚C(𝜓)⊤Du

̇𝐪 = 1
2𝛀(𝜔)q

𝝎̇ = J−1(𝝉 − [𝝎]×(J𝜔))

(3.13)
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Chapter 4

Docking Station Design

A docking station was designed to support the experimental docking scenario
with the dimension of 280mmx140mmx650mm (refer fig. 4.2). The structural
frame uses V-Slot aluminum extrusions, and the fiducial pattern follows the
NASA Circular Navigation Feature (CNF) that is scaled down to 60% of its
original dimension to fit the workspace. [46]. To facilitate the final capture,
a conical guide is mounted on both the station and free-flyer. Each cone
equipped with an embedded neodymium magnet, manufactured using a 3D
printer. This provides passive self-alignment and holding force at contact.

Figure 4.1: Section view of the docking station conical guide.



38 | Docking Station Design

Figure 4.2: Docking station design.
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Chapter 5

System Design

This chapter shows the end-to-end pipeline used in both simulation and
hardware experiment. The loop combines perception (pose estimation and
feature extraction), an MPC with hybrid VS switching (MPVS), and the robot
dynamics. Each block will further explained in this chapter. Figure fig. 5.1
represents the control architecture.

Figure 5.1: Vision-based hybrid control architecture. Blue labels denote
signals.

5.1 Point cloud Preprocessing
This thesis relies on the Point Cloud Library (PCL)[47] as the primary toolkit
for point-cloud processing, including voxel downsampling, registration, and
related utilities.
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It is a best practice to always downsample a point cloud before
manipulating it to reduce computation while preserving geometric fidelity.
The parameter 𝑙𝑒𝑎𝑓 _𝑠𝑖𝑧𝑒 represents the resolution of the grid—trades accuracy
for speed. Larger voxels yield fewer points and faster runtime, while smaller
voxels retain finer detail at higher cost. In this thesis, the voxel-grid leaf size
is set to 0.012.

After downsampling the point cloud, plane segmentation is performed
to detect the floor and walls. Using PCL’s RANSAC segmentation with an
orientation constraint, we can obtain the plane equation by checking its normal
if it is either perpendicular or parallel to an axis. The plane equation is then
used to filter the point cloud outside the region of interest.

Figure 5.2: (a) Raw point cloud; (b) Detecting wall plane; (c) Detecting floor
plane; (d) Filtered point cloud.

5.2 Cascaded ICP for Pose Tracking
This section presents the pose estimation approach adopted in this work:
a two-stage, correspondence-based pipeline that combines GICP for high-
accuracy local alignment (refinement) with GO-ICP for global alignment.
We choose this combined strategy from all available methods discussed in
section 2.3 because it yields a balanced trade-off between computational cost
and accuracy, which is suitable for our platform and operating conditions.
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5.2.1 Initial Pose Estimation
ICP is a local optimization algorithm, and its performance relies heavily on
the initialization. If the initial guess is poor, ICP may converge to a local
minimum. To address this, GO-ICP is utilized to provide a robust initial
estimate for the subsequent local ICP.

Before applying GO-ICP, both the target and scene point clouds are
normalized to fit in [−1, 1]3 space by centering each cloud at the origin and
scaling them with the maximum radius among the point clouds. The following
pseudo-code summarizes the registration process between the data cloud D
and the model cloud M.

Algorithm 1 Pose estimation with GO-ICP registration.
Require: Point clouds D = {d𝑖} ⊂ ℝ3, M = {m𝑗} ⊂ ℝ3

Ensure: Tfinal ∈ 𝑆𝐸(3) in original coordinates
1: c𝐷 ← mean(D); c𝑀 ← mean(M)
2: D𝑐 ← { d𝑖 − c𝐷 }; M𝑐 ← { m𝑗 − c𝑀 } ▷ center
3: 𝑟𝐷 ← maxd∈D𝑐 ‖d‖2; 𝑟𝑀 ← maxm∈M𝑐 ‖m‖2
4: 𝑠 ← 1/ max(𝑟𝐷, 𝑟𝑀); D𝑛 ← 𝑠D𝑐; M𝑛 ← 𝑠M𝑐 ▷ normalize
5: (R∗, t∗) ← GO-ICP(D𝑛,M𝑛)
6: Tdata ← [𝐼3 −𝑐𝐷

0T 1 ]; Tmodel ← [𝐼3 c𝑀
0T 1 ]

7: S ← [𝑠I3 0
0T 1]; 𝑆−1 ← [

1
𝑠 I3 0
0T 1]

8: Tnorm ← [𝑅∗ t∗

0T 1]

9: Tfinal ← Tmodel S−1 Tnorm S Tdata
10: return Tfinal

Here, c𝑋 and X 𝑐 represents the center coordinate and centered point cloud
X, 𝑟𝑋 represents the maximum distance from the origin, and 𝑠 the scaling
factor. After registration, The estimated transformation is de-normalized to
recover the final transformation Tfinal in the original coordinate frame.

GO-ICP builds a distance map of the entire scene and searches for the
model pose within a bounding box. If the scene contains points that are
far outside the object’s region of interest, the bounding box becomes large,
increasing computational cost, and the closest-point cost may be biased by
the clutter, resulting in misalignment. Cropping the scene to the ROI and
removing planar structures or outliers mitigate these issues and improve
robustness.
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The source code of GO-ICP from [37] (C++) was integrated into our
system by developing a ROS2 wrapper. As a part of this integration,
we implemented the transformation conversion procedure described in
section 5.2.1 within the wrapper to process the original point clouds.

5.2.1.1 Pose Transformation Verification

GO-ICP might return an alignment that is orientation-flipped when the data
are partially occluded or the object is near-symmetric (refer fig. 5.3). To
guard against these cases, we validate the estimated pose by checking axis
consistency with respect to the camera frame.

Figure 5.3: (a) Ground truth pose;(b) Flipped orientation (on x axis);(c)
Flipped orientation(on y axis).

Let R∗ be the rotation from object to camera. By defining unit axes in the
camera frame as x̂obj and ̂zobj, we can compute the angles using eq. (5.2):

̂xobj = R∗ ̂e𝑥, ̂zobj = R∗ ̂e𝑧 (5.1)

𝛼𝑥 = arccos(x̂cam ⋅ x̂obj), 𝛼𝑧 = arccos( ̂zcam ⋅ ̂zobj) (5.2)

where the dot products are clamped to [−1,1] to avoid numerical errors.
We then perform two constraints that encode our expected viewpoint:
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(i) the object’s 𝑥-axis should face the camera, so 𝛼𝑥 ≥ 90∘ + 𝛿𝑥 (with a
small margin 𝛿𝑥, e.g., 5∘);

(ii) the object should be upright relative to the camera, so 𝛼𝑧 ≤ 𝜃𝑧 (e.g.,
20∘–30∘).

If either test fails, we treat the result as invalid and retry GO-ICP.

5.2.2 GICP Refinement
The transformation result from GO-ICP is then fed into GICP as the initial
guess to refine the estimate and update it in a higher frequency. GO-ICP
takes around 2000-5000ms while GICP takes 50ms to get the result. The
refined transformation is then used as a pose reference in the MPC (will further
explained in section 5.3). The full pose tracking pipeline is described below:
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Figure 5.4: Online pose tracking pipeline.

5.3 MPVS Design
This section builds on an existing reference-tracking MPC implementation
for the Autonomy Testbed for Multi-purpose Orbiting Systems (ATMOS) free
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flyer [48]. This controller reliably follows pose setpoints under actuation and
state constraints.

We extend this controller with a hybrid VS scheme for docking with
two phases. In the Alignment Phase, the controller uses PBVS to rapidly
reduce large pose error and align the robot with the docking station. As
robot approaches close range and become approximately perpendicular to the
station, the objective dynamically shift to the Docking Phase, prioritizing the
image features 𝑠 (IBVS), yielding high-rate, pixel-level accuracy right up to
convergent. Figure 5.5 visualizes the two-step docking phases.

Figure 5.5: Two-step docking phases.

This scheduling exploits the complementary strength of both methods
while mitigating their weaknesses. PBVS is efficient when the full pose is
observable, but the accuracy tends to degrades near the target when only a
partial point cloud is visible. In contrast, IBVS remains responsive and precise
in close proximity, yet from farther distance it can suffer from poor interaction-
matrix conditioning and convergence to local minima. We will discuss the
hybrid VS strategy in this section below.

5.3.1 FOV Constraint Inequality
Since MPC supports inequality constraints, we enforced a FOV bearing
constraint that preserves a minimum alignment between camera link axis
and the centroid of the object. let pk and q𝑘 to be the robot pose in the
inertial frame, p𝑜 the (estimated) target position, q𝑘,𝑟𝑜𝑡 the rotated quaternion,
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𝑐𝑎𝑚q𝑏𝑎𝑠𝑒 the 𝑏𝑎𝑠𝑒 → 𝑐𝑎𝑚 rotation (180°yaw on z-axis), and c𝑐𝑎𝑚 the camera
link axis. The line-of-sight vector r𝑐𝑎𝑚

𝑘 is described using quaternion product
and DCM in eq. (5.3).

𝑐𝑎𝑚q𝑏𝑎𝑠𝑒 = [𝑐𝑜𝑠(𝜋/2), 0, 0, 𝑠𝑖𝑛(𝜋/2)] = [0, 0, 0, 1]
q𝑘,𝑟𝑜𝑡 = q𝑘 ⊗ 𝑐𝑎𝑚q𝑏𝑎𝑠𝑒
r𝑐𝑎𝑚

𝑘 = C(q𝑘,𝑟𝑜𝑡)⊤(p𝑜 − p𝑘).
(5.3)

Using a dot product between two vectors, the instantaneous bearing angle
𝜃𝑘 between ccam and r𝑐𝑎𝑚

𝑘 obeys

cos 𝜃𝑘 =
cT

𝑐𝑎𝑚r𝑐𝑎𝑚
𝑘

‖r𝑐𝑎𝑚
𝑘 ‖ . (5.4)

With the camera optical axis aligned with the camera-frame x-axis, the
camera link axis c𝑐𝑎𝑚 is the x axis of r𝑐𝑎𝑚

𝑘 . Thus, the dot product simplifies
into r𝑐𝑎𝑚

𝑥,𝑘 . Requiring 𝜃𝑘 ≤ 𝜃𝑚𝑎𝑥 (camera half-FOV, or a tighter margin) is
equivalently enforced by the inequality:

𝑔(x𝑘) ∶ cos(𝜃max) ‖r𝑐𝑎𝑚
𝑘 ‖ − r𝑐𝑎𝑚

𝑥,𝑘 ≤ 0, (5.5)

which geometrically keeps r𝑐𝑎𝑚
𝑘 inside a cone of half-angle 𝜃𝑚𝑎𝑥 about

ccam. This form avoids 𝑎𝑟𝑐𝑐𝑜𝑠(.) and is numerically well behaved for 𝜃𝑚𝑎𝑥 ∈
[0, 90°].

Because temporary loss of visibility can be unavoidable (e.g, obstacles, re-
planning, aggressive references), the constraint is soften using slack variable
eq. (5.6). fig. 5.6 shows the illustration of of FOV constraint design (top-view).

𝑔(x𝑘) ≤ 𝜁𝑘, 𝜁𝑘 ≥ 0. (5.6)

Figure 5.6: Visibility constraint illustration.
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5.3.2 Image Dynamics
To simplify notation for this section, the reference frames are abbreviated as
follows: map 𝑚, base 𝑏, camera 𝑐, and optical 𝑜. From section 2.1, the features’
dynamic equation ( ̇s = L𝐨

s 𝝃 ) are integrated into the MPC by augmenting
the state with the features s. Because L𝑠 is defined with the camera twist
expressed in the optical frame 𝑜𝝃 , while the free-flyer dynamics are specified
in the inertial (map) frame, twists must be converted between frames using the
adjoint representation of the homogeneous transform:

𝑏T𝑚 = [
𝑏R𝑚 p𝑘

0 1 ] (map → base),

𝑐T𝑏 = [
𝑐R𝑏 t𝑏𝑐
0 1 ] (base → cam),

𝑜T𝑐 = [
𝑜R𝑐 0
0 1] (cam → opt).

(5.7)

The transformation chain from map to optical is:

𝑜T𝑚 =𝑜 T𝑐
𝑐T𝑏

𝑏T𝑚. (5.8)

After obtaining the transformation, the adjoint that maps twists can be
calculated using following equation:

Ad(T) = [ R 0
[t]×R R] (5.9)

Finally, the twist from map to optical can be expressed as in eq. (5.10) and
used to update the feature dynamics eq. (5.11)

𝑜𝝃 = Ad(𝑚T𝑜) 𝑚𝝃 . (5.10)

̇s = ℎ(s, u) = Ls (Ad(𝑚T𝑜) 𝐦𝝃) (5.11)

5.3.3 Hybrid VS Switching Strategy
Employing a hard switch between PBVS and IBVS modes works in simple
scenario. But, in real deployments it could creates discontinuities in both
the objective and resulting control law. This can lead to jerky robot motion,
control chattering, reduced tracking accuracy, and even temporary feature loss
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at the moment of switching. To address these issues, a dynamic switching
strategy is adopted, where the controller is scheduled smoothly between
PBVS and IBVS based on real-time metrics such as pose confidence (PBVS
reliability), interaction-matrix conditioning and feature count or stability
(IBVS reliability), or the Lyapunov derivative.

[49] implemented probabilistic framework of each individual control law
by designing a risk-based weighting to update the probability to tackle each
other’s weaknesses. A gaussian distribution is used to construct the weight.
Another research by [18] (as mentioned in section 2.6) uses Lyapunov function
to toggle the control law between PBVS and IBVS.

We proposed a dynamic switching between PBVS and IBVS by comparing
their predicted Lyapunov decay rates and converting them into weights 𝑤𝑝 and
𝑤𝑠, which blend the two objectives terms in MPC. The weights are computed
externally at each control step and kept fixed over the prediction horizon.

5.3.3.1 Lyapunov Function Candidates

To define quadratic Lyapunov candidate for PBVS, the position error 𝑒𝑝 can be
used :

𝑉𝑝 = 1
2eT

p Pep, P ≻ 0 (5.12)

differentiating the equation yields the PBVS Lyapunov decay rate:

𝑉̇𝑝 = eT
p P ̇e𝑝 = eT

p Pv. (5.13)

Similarly, the IBVS Lyapunov decay rate can be constructed from the
image features error e𝑠 and it’s dynamics ̇s:

𝑉𝑠 = 1
2eT

s Ses, S ≻ 0

𝑉̇𝑠 = e𝑇
𝑠 S ̇s

= e𝑇
𝑠 S (L𝑠

𝑜𝝃)

(5.14)

5.3.3.2 Dynamic Weight Design

Negative Lyapunov values indicate faster decay, while positive values are
undesirable as they correspond to energy growth. Therefore, the weight update
is restricted to depend only on the negative values. Using the modified softmax
function, where 𝑘 > 0 tunes sensitivity and epsilon be a very small value to
avoid division by zero 0 < 𝜖 ≪ 1, the weights are defined in eq. (5.15) below.
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𝑤𝑝 =
⎧{{
⎨{{⎩

𝑒−𝑘 𝑉̇𝑝

𝑒−𝑘 𝑉̇𝑝 + 𝑒−𝑘 𝑉̇𝑠 + 𝜀
, 𝑉̇𝑝 ≤ 0,

0, 𝑉̇𝑝 > 0,

𝑤𝑠 = 1 − 𝑤𝑝.

(5.15)

For comparison, a linear alternative is formulated using a ratio method,
as shown in eq. (5.16). Since both 𝑉̇𝑝 and min{0, 𝑉̇𝑠} are non-positive, the
resulting fraction is always bounded in the range [0, 1].

𝑤𝑝 =
⎧{
⎨{⎩

𝑉̇𝑝

𝑉̇𝑝+min{0,𝑉̇𝑠}+𝜀 , 𝑉̇𝑝 ≤ 0,

0, 𝑉̇𝑝 > 0,
𝑤𝑠 = 1 − 𝑤𝑝 (5.16)

To construct dynamic weighting matrices for the states, we define two sets
of weights for the PBVS and IBVS modes, since their objectives differ. PBVS
priorities pose error and does not account for image features, whereas IBVS
emphasizes feature error and robot velocity. The weights are updated using
linear scaling scheme, as shown in eq. (5.17). Here, Q𝑝, Q𝑠, and S𝑠 denotes
the PBVS weight, IBVS weight, and feature weight, respectively. The terminal
costs Phybrid and Whybrid are defined in the same way, but with an amplified
constant.

Qhybrid = 𝑤𝑝Q𝑝 + 𝑤𝑠Q𝑠

Shybrid = 𝑤𝑠S𝑠
(5.17)

5.3.4 MPC Formulation
we extended the reference-tracking MPC by adding feature dynamics 𝑠0 … 𝑠7
into the system state since 4 point features are placed on the docking station.
For clarity, the feature dynamics 𝑠 are described separately from the system
state 𝑥 when expressing the weighting explicitly. Acados [50] is used to solve
the nonlinear optimal control problems. The cost function is formulated as
a nonlinear least-squares problem, and the system dynamics are discretized
using the Explicit Runge–Kutta (ERK) method.

By using the feature dynamics (eq. (5.11)), dynamic weighting (eqs. (5.15)
and (5.16), and incorporating FOV constraint (eqs. (5.5) and (5.6), the MPVS
optimization problem is formulated as follows:
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𝐽∗ = min
{x𝑘,u𝑘,s𝑘,𝜁𝑘}

𝑁−1
∑
𝑘=0

𝐽𝑘(x𝑘, u𝑘, s𝑘) + 𝐽𝑁(x𝑁 , s𝑁)

s.t. x𝑘+1 = 𝑓 (xk, uk), ∀𝑘 = 0, … , 𝑁 − 1,

s𝑘+1 = ℎ(sk, uk), ∀𝑘 = 0, … , 𝑁 − 1,

𝑔(x𝑘) ≤ 𝜁𝑘,

umin ≤ u𝑘 ≤ umax, ∀𝑘 = 0, … , 𝑁 − 1,

x0 = xinit, s0 = sinit,

x𝑁 = x𝐺, s𝑁 = s𝑑

(5.18)

with:

𝐽𝑘(x𝑘, u𝑘, s𝑘) = ‖x𝑘 − r𝑘‖2
Qhybrid

+ ‖u𝑘‖2
R + ‖s𝑘 − s𝑑‖2

Shybrid
+ 𝜎(𝜁𝑘),

𝐽𝑁(x𝑁 , s𝑁) = ‖x𝑁 − r𝑁‖2
Phybrid

+ ‖s𝑁 − s𝑑‖2
Whybrid

+ 𝜎(𝜁𝑁).
(5.19)

Where 𝑓 (.) and ℎ(.) is the free-flyer and image feature dynamics, ‖x‖P
equal to the weighted vector norm (√x⊤Px), r𝑇 is the reference state at
timestep 𝑇, and s𝑑 is the reference image features.

5.3.5 Penalty Weights Tuning
The performance of the proposed MPC depends on the choice of penalty
weights in the stage and terminal costs (Qℎ𝑦𝑏𝑟𝑖𝑑, Pℎ𝑦𝑏𝑟𝑖𝑑, Sℎ𝑦𝑏𝑟𝑖𝑑, Wℎ𝑦𝑏𝑟𝑖𝑑).
Since these weights directly influence the trade-off between tracking accuracy,
control effort, and visual feature alignment, they were tuned using trial-and-
error procedure. The tuning process differed depending on the VS mode:

5.3.5.1 Position-Based Mode

The same weights as in the reference-tracking MPC design were used as both
modes aim to minimize the free-flyer state error relative to a desired trajectory.
Consequently, the penalty weights related to image features (S𝑝 and W𝑝) were
set to zero.
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5.3.5.2 Image-Based Mode

In this mode, the error is defined in the image plane and measured in pixel
units. The weights S𝑠 and W𝑠 were scaled down to prevent the solver from
being too aggressive in minimizing the feature error. This adjustment ensures
that the controller balances feature alignment with overall system stability,
rather than prioritizing pixel-level accuracy at the expense of smooth control
inputs.

5.3.5.3 Hybrid Mode

To tune the hybrid mode, the Lyapunov weights and the softmax temperature
parameter 𝑘 were adjusted to control the smoothness of the blending process.
Additionally, the stage and terminal cost penalty weights were gradually
shifted from PBVS to IBVS weight. The MPC parameters that are used for
the system are described in table 5.1.

Parameter Value
𝑁𝑡 (horizon number) 25

R diag(40,40,40,40)
PBVS mode

Q𝑝 diag(10,10,10,1e2,1e2,1e2,1e4,2e2,2e2,2e2)
P𝑝 30Qp
S𝑝 0
W𝑝 0

IBVS mode
Q𝑠 diag(0,0,0,3e3,3e3,3e3,0,16e3,16e3,16e3)
P𝑠 30Q𝑠
S𝑠 60e-4
W𝑠 60S𝑠

Table 5.1: MPC cost function parameters.
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Chapter 6

Experiments and Results

In order to validate the proposed system, we followed a two-stage process.
First, simulation in PX4 software in the loop (SITL) with Gazebo to proof
the theory and tune the parameters. Second, hardware in the loop (HITL)
experiments on the planar free-flyer ATMOS in the ITRL space lab. Both
stages use the same pose estimation pipeline and MPC formulation, only differ
in the penalty weights, and GO-ICP parameters. The work of this thesis is done
in ROS (jazzy) framework.

We evaluated two components: (i) pose estimation, and (ii) hybrid VS
(PBVS–IBVS) behavior. For software simulation, the ground truth for the
docking station pose comes from Gazebo. For HITL validation, the ground
truth is obtained using the motion capture (mocap) system by placing passive
markers on the docking stations. To evaluate the pose estimation accuracy,
3 randomized robot poses with the docking station visible in the camera has
been selected. For each pose, computed the docking station pose w.r.t the map
frame using GO-ICP (initial pose) and GICP (refined pose).

6.1 Software Simulation

6.1.1 Simulation Environment
Gazebo Harmonic is used to set up a simulation environment. A simple
scenario requires the COLLADA file (.dae) of the robot, and other objects
such as obstacles, walls, and floor). Then, a virtual RGB-D camera needs to
be prepared to publish the 2D image and point cloud. ros_gz_bridge package
is used to bridge communication between gazebo and ROS2. For briding
communication between PX4 SITL and ROS2, uXRCE-DDS is used as a DDS
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bridge. The snapshot of the Gazebo world used for the system development is
shown in fig. 6.1.

Figure 6.1: Simulation environment used for development.

6.1.2 Simulation Results
The table 6.1 shows the position and orientation error, runtime (for initial
alignment), and success count. The position error is calculated using
Euclidean norm between estimated and ground-truth translations. The
rotational error is calculated using geodesic angle between estimated and
ground-truth orientations (section 2.4.6). It can be seen that GICP able to
improve the orientation error from the initial estimated pose. The position
error doesn’t get any lower because the initial estimate was accurate enough.
Additionally, the normalized errors which is the relative error with respect to
the distance from the robot to the ground truth were lower than 5%.

GO-ICP
Mean Position

Error [m]

GO-ICP
Mean Attitude

Error [°]

GICP
Mean Position

Error [m]

GICP
Mean Attitude

Error [°]

Success
Rate [%]

Distance to
Station [m]

Normalized
Error [%]

GO-ICP
Mean

Runtime [s]

0.045 0.534 0.048 0.292 100 2.08 2 3.51
0.051 0.618 0.053 0.890 100 1.58 3 5.13
0.061 0.954 0.050 0.879 80 2.10 2 3.02

Table 6.1: Pose estimation and runtime summary (SITL).

For the hybrid VS results, we ran 5 experiments and highlight the run with
best docking time. Multiple metrics are evaluated to analyze the result. First,
the individual features’ errors and the features’ motion are presented below.
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Figure 6.2: Individual feature error (SITL): Discrete mode.

Figure 6.3: Individual feature error (SITL): Ratio mode.

Figure 6.4: Individual feature error (SITL): Softmax mode.
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Figure 6.5: Image-feature motion in image plane (SITL): Discrete mode.

Figure 6.6: Image-feature motion in image plane (SITL): Ratio mode.
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Figure 6.7: Image-feature motion in image plane (SITL): Softmax mode.

Next, the weights and Lyapunov’s derivative over time are described in the
following.

Figure 6.8: VS weights and Lyapunov Derivative (SITL). Left: Discrete mode.
Right: Ratio mode.
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Figure 6.9: VS weights and Lyapunov Derivative (SITL): Softmax mode.

Table 6.2 presents the steady-state error (SSE) of the image features and
free-flyer pose in simulation. The SSE values are generally higher than those
observed in hardware experiments, as the simulation does not model the
passive self-alignment magnet. Without this physical self-alignment effect,
the robot must rely on active control to maintain its pose, making it harder to
maintain the feature error within a small threshold.

Switching Mode Image Features SSE [px] Robot Position SSE [m] Robot Attitude SSE [°]
Discrete 19.21 0.0307 2.2277
Ratio 20.39 0.0121 0.9332
Softmax 19.57 0.0198 2.2625

Table 6.2: Steady-state error metrics across switching modes (SITL).

Finally, we evaluated the required time from the aligning phase until the
free flyer has been docked:
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Switching Mode Average Full Docking Duration [s] Average Hybrid VS Duration [s]
Discrete 89.86 80.85
Ratio 72.77 63.84
Softmax 45.31 36.67

Table 6.3: Docking duration (SITL).

From the results above, we can see the softmax weighting decreases the
feature error more smoothly than the discrete and ratio modes while achieving
the shortest docking time. This likely happens because the softmax mode
switch smoothly from PBVS to IBVS as soon as it promises a larger negative
Lyapunov rate. Furthermore, because the reference hybrid position is chosen
to be the intermediate distance between the docking station and the aligned
position, it helps bring the robot closer to the docking station, improving
feature visibility and the conditioning of the interaction matrix; IBVS then
performs the final, precise alignment. Using the discrete mode, however, is
more prone for IBVS to converge in the local minima since the initial features
error is too big.

6.2 Hardware Validation
ATMOS is a planar free-flyer operating on air-bearings, enabling near-
frictionless motion in 𝑆𝐸(2). The platform consists of a PX4 flight controller
(PX4 6X) for low-level actuation with an onboard computer (Jetson Orin NX).
An RGB-D camera (ZED Mini) is mounted on top of the robot. A mocap
system provides pose measurements to obtain vehicle’s odometry that are
fused with the PX4 Extended Kalman filter (EKF) estimator.

6.2.1 Hardware Experiment Results
The same procedure were executed to evaluate the pose estimation error. The
normalized pose errors relative to the robot distance to the station were less
than 1%. The presented figures below are the experiment result with best
docking time.
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GO-ICP
Mean Position

Error [m]

GO-ICP
Mean Attitude

Error [°]

GICP
Mean Position

Error [m]

GICP
Mean Attitude

Error [°]

Success
Rate [%]

Distance to
Station [m]

Normalized
Error [%]

GO-ICP
Mean

Runtime [s]

0.063 4.373 0.063 4.593 80 1.61 4 7.53
0.078 6.871 0.090 5.785 100 0.91 10 2.72
0.071 6.126 0.079 6.283 80 1.50 5 4.60

Table 6.4: Pose estimation and runtime summary (HITL).

Figure 6.10: Individual features error (HITL): Discrete mode.

Figure 6.11: Individual features error (HITL): Ratio mode.
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Figure 6.12: Individual features error (HITL): Softmax mode.

Figure 6.13: Image-feature motion in image plane (HITL): Discrete mode.
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Figure 6.14: Image-feature motion in image plane (HITL): Ratio mode.

Figure 6.15: Image-feature motion in image plane (HITL): Softmax mode.
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Figure 6.16: VS weights and Lyapunov Derivative (HITL). Left: Discrete
mode. Right: Ratio mode.

Figure 6.17: VS weights and Lyapunov Derivative (HITL): Softmax mode.
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Switching Mode Image Features SSE [px] Robot Position SSE [m] Robot Attitude SSE [°]
Discrete 5.65 0.001 0.143
Ratio 6.63 0.0017 0.18
Softmax 5.09 0.001 0.25

Table 6.5: Steady-state error metrics across switching modes (HITL).

Switching Mode Average Full Docking Duration [s] Average Hybrid VS Duration [s]
Discrete 84.65 69.87
Ratio 68.69 51.50
Softmax 55.01 41.66

Table 6.6: Docking duration (HITL).

From the hardware results, we can see that softmax mode gives consistent
performance with the simulation results in terms of duration and smoother
feature error evolution.

The drawback with Lyapunov and hybrid switching is that they are
sensitive to unit mismatches. PBVS Lyapunov function is defined based on
position error (in meter), whereas IBVS Lyapunov function is defined from
image features error (in pixel). A manual scaling needs to be applied to directly
compare the magnitude of both functions. Furthermore, the temprature
parameter 𝑘 in softmax mode also needs to be manually adjusted to control
the sharpness of the transition.

6.2.2 System Performance
Three time-critical ROS2 nodes are executed at real-time rates. First, a blob-
detection node (OpenCV, HSV thresholding) at 30Hz. Second, the MPVS
controller at 15Hz. Third, the pose estimation node at 10Hz. This indicates
that the system meets real-time requirements under limited computational
resources.
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Chapter 7

Conclusions and Future work

7.1 Conclusions
This thesis presented a docking pipeline that combines model-based pose
estimation (GO-ICP followed by GICP refinement) by improving the current
trajectory-tracking MPC into an MPVS controller through a hybrid VS
formulation. The approach requires only an RGB-D camera and a CAD
model of the docking station, relying on geometric fiducial points in a semi-
structured environment. The cascaded ICP demonstrated robust performance
with an acceptable initialization time. Among the tested switching strategies,
the dynamic switching approach consistently outperformed discrete switching,
with the softmax-based mode achieving the best result. The system was
validated in both SITL and HITL environment, showing that it can operate
at high frequency within limited computational resources.

7.2 Limitations
The study surfaced several limitations, generalization to full 6-DOF dynamics
remains to be tested. The blob detection is further required to be improved.
Currently, it assumes adequate texture/contrast and depth quality, and can
degrade under small occlusions or extreme lighting change. It also sensitive
with image blur and can detect false positive blobs. The dynamic weighting
used inside the MPC is heuristic rather than formally optimal, and while
effective in practice, it lacks a stability/performance guarantee for all operating
conditions. On the pose estimation part, the GO-ICP sometime provides
wrong orientation when there are outliers far outside the object’s region of
interest in the scene point cloud.
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Other limitation observed during docking occurs when the robot makes
near-contact with the cone guider without being perfectly aligned to the
docking station. By that, the cone can unintentionally induce a rotation in the
robot’s attitude, which may drive the image dynamics into a local minimum
and hinder convergence.

7.3 Future work
On the control side, a possibility is to improve the hybrid strategy
with visibility/conditioning metrics (e.g., feature count, feature stability,
interaction-matrix condition number) rather than fixed heuristics. On the
perception side, replacing the point features with lines (e.g., handrail features,
docking station structures, etc.) and adopting more robust photometric
pipelines would improve resilience to clutter and illumination changes.
Furthermore, an outlier removal using image dynamics and adding features
consistency could be implemented to make the blob detection more robust.

For pose estimation, an outlier removal algorithm could be performed
before running GO-ICP. One approach is to cluster the scene point cloud,
compute 3D descriptors (e.g., FPFH or SHOT) for each cluster, and compare
them with descriptors derived from the CAD model. The cluster with the
highest similarity is then chosen as the region of interest for registration.

For the lab, wrapping all the developed system with a behaviour tree behind
a clean user interface (UI) could also be a great addition to the lab facilities,
where the operator can look at the UI and with only a single ’Dock’ action, the
system will run a safety check and perform the full docking process. Finally,
integrating mechanical tolerance or compliance into the docking interface
design to reduce the sensitivity to misalignment.
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Interest in the development of \glsxtrfull{ARD} has been growing since the 1960s as it is an
important procedure for refueling spacecraft and transferring resources. Achieving centimeter-scale
accuracy in \glsxtrshort{ARD} commonly relies on \glsxtrfull{VS}. Two common classical
\glsxtrshort{VS} methods are \glsxtrfull{IBVS} and \glsxtrfull{PBVS} utilize a velocity-based control
law that is straightforward, yet suffer from depth or visibility sensitivity and local minima.

This thesis presents a hybrid \glsxtrshort{VS} with \glsxtrfull{MPC} docking pipeline for a
free-flyer that requires only an \glsxtrshort{RGBD} camera and a \glsxtrfull{CAD} model of a docking
station. The pose of the station is initialized by \glsxtrfull{GOICP} and refined with
\glsxtrfull{GICP}. This estimation seeds a trajectory-tracking \glsxtrshort{MPC} that orients the
free-flyer to maximize the visibility of geometric point features. A dynamic weighting strategy in
the \glsxtrshort{MPC} cost is then used to control the soft-switching between \glsxtrshort{PBVS} and
\glsxtrshort{IBVS}. Finally, the feature dynamics is described to the \glsxtrshort{MPC} to minimize
the image errors while respecting system constraints.

We evaluated the method in \glsxtrfull{ROS} with Gazebo on a planar 3-\glsxtrfull{DOF} free-flyer and
further validated it in the KTH \glsxtrfull{SRL}, reporting docking success rate, steady-state pose
error, and computation time. The results indicated reliable docking without AR tags, using only
geometric fiducials, and demonstrated that the \glsxtrshort{PBVS}-\glsxtrshort{IBVS} transition
improves visibility and mitigates local-minimum failures.



€€€€,
”Keywords[eng ]”: €€€€
Computer vision, Free-flyer, Iterative Closest Point, Model Predictive Control, Visual servo €€€€,
”Abstract[swe ]”: €€€€
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Intresset för utvecklingen av \glsxtrfull{ARD} har ökat sedan 1960-talet, eftersom det är ett viktigt
förfarande för att tanka rymdfarkoster och överföra resurser. Att uppnå noggrannhet på centimeternivå
i \glsxtrshort{ARD} bygger ofta på \glsxtrfull{VS}. Två vanliga klassiska \glsxtrshort{VS}-metoder är
\glsxtrfull{IBVS} och \glsxtrfull{PBVS}, som använder en hastighetsbaserad reglerlag som är enkel men
ändå känslig för djup och synlighet samt drabbas av lokala minima.

Denna avhandling presenterar en hybrid \glsxtrshort{VS}- och \glsxtrfull{MPC}-baserad
dockningspipeline för en fri-flygande plattform som endast kräver en \glsxtrshort{RGBD}-kamera och en
\glsxtrfull{CAD}-modell av en dockningsstation. Stationens pose initieras med \glsxtrfull{GOICP} och
förfinas med \glsxtrfull{GICP}. Denna skattning initierar en banaföljande \glsxtrshort{MPC} som
orienterar den fri-flygande plattformen för att maximera synligheten av geometriska punktlandmärken.
En dynamisk viktning i \glsxtrshort{MPC}-kostnadsfunktionen används därefter för att åstadkomma mjuk
växling mellan \glsxtrshort{PBVS} och \glsxtrshort{IBVS}. Detta gör att \glsxtrshort{MPC} kan
optimera kamerans hastigheter för att minimera bildfelet samtidigt som systembegränsningarna
respekteras.

Vi utvärderade metoden i \glsxtrfull{ROS} med Gazebo på en plan 3-\glsxtrfull{DOF} fri-flygande
plattform och validerade den vidare i KTH \glsxtrfull{SRL}. Vi redovisar andelen lyckade dockningar,
stationärt posefel och beräkningstid. Resultaten visar tillförlitlig dockning utan AR-taggar — med
enbart geometriska referensmarkörer — och att övergången \glsxtrshort{PBVS–}\glsxtrshort{IBVS}
förbättrar synligheten och minskar fel orsakade av lokala minima.
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Interest in the development of \glsxtrfull{ARD} has been growing since the 1960s as it is an important procedure for refueling  spacecraft and transferring resources. Achieving centimeter-scale accuracy in \glsxtrshort{ARD} commonly relies on \glsxtrfull{VS}. Two common classical \glsxtrshort{VS} methods are \glsxtrfull{IBVS} and \glsxtrfull{PBVS} utilize a velocity-based control law that is straightforward, yet suffer from depth or visibility sensitivity and local minima.

This thesis presents a hybrid \glsxtrshort{VS} with \glsxtrfull{MPC} docking pipeline for a free-flyer that requires only an \glsxtrshort{RGBD} camera and a \glsxtrfull{CAD} model of a docking station. The pose of the station is initialized by \glsxtrfull{GOICP} and refined with \glsxtrfull{GICP}. This estimation seeds a trajectory-tracking \glsxtrshort{MPC} that orients the free-flyer to maximize the visibility of geometric point features. A dynamic weighting strategy in the \glsxtrshort{MPC} cost is then used to control the soft-switching between \glsxtrshort{PBVS} and \glsxtrshort{IBVS}. Finally, the feature dynamics is described to the \glsxtrshort{MPC} to minimize the image errors while respecting system constraints.

We evaluated the method in \glsxtrfull{ROS} with Gazebo on a planar 3-\glsxtrfull{DOF} free-flyer and further validated it in the KTH \glsxtrfull{SRL}, reporting docking success rate, steady-state pose error, and computation time. The results indicated reliable docking without AR tags, using only geometric fiducials, and demonstrated that the \glsxtrshort{PBVS}-\glsxtrshort{IBVS} transition improves visibility and mitigates local-minimum failures."
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Intresset för utvecklingen av \glsxtrfull{ARD} har ökat sedan 1960-talet, eftersom det är ett viktigt förfarande för att tanka rymdfarkoster och överföra resurser. Att uppnå noggrannhet på centimeternivå i \glsxtrshort{ARD} bygger ofta på \glsxtrfull{VS}. Två vanliga klassiska \glsxtrshort{VS}-metoder är \glsxtrfull{IBVS} och \glsxtrfull{PBVS}, som använder en hastighetsbaserad reglerlag som är enkel men ändå känslig för djup och synlighet samt drabbas av lokala minima.

Denna avhandling presenterar en hybrid \glsxtrshort{VS}- och \glsxtrfull{MPC}-baserad dockningspipeline för en fri-flygande plattform som endast kräver en \glsxtrshort{RGBD}-kamera och en \glsxtrfull{CAD}-modell av en dockningsstation. Stationens pose initieras med \glsxtrfull{GOICP} och förfinas med \glsxtrfull{GICP}. Denna skattning initierar en banaföljande \glsxtrshort{MPC} som orienterar den fri-flygande plattformen för att maximera synligheten av geometriska punktlandmärken. En dynamisk viktning i \glsxtrshort{MPC}-kostnadsfunktionen används därefter för att åstadkomma mjuk växling mellan \glsxtrshort{PBVS} och \glsxtrshort{IBVS}. Detta gör att \glsxtrshort{MPC} kan optimera kamerans hastigheter för att minimera bildfelet samtidigt som systembegränsningarna respekteras.

Vi utvärderade metoden i \glsxtrfull{ROS} med Gazebo på en plan 3-\glsxtrfull{DOF} fri-flygande plattform och validerade den vidare i KTH \glsxtrfull{SRL}. Vi redovisar andelen lyckade dockningar, stationärt posefel och beräkningstid. Resultaten visar tillförlitlig dockning utan AR-taggar — med enbart geometriska referensmarkörer — och att övergången \glsxtrshort{PBVS}–\glsxtrshort{IBVS} förbättrar synligheten och minskar fel orsakade av lokala minima.
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%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
% The following command is used with glossaries-extra
\setabbreviationstyle[acronym]{long-short}
% The form of the entries in this file is \newacronym{label}{acronym}{phrase}
% or \newacronym[options]{label}{acronym}{phrase}
% see ”User Manual for glossaries.sty” for the details about the options, one example is shown below
% note the specification of the long form plural in the line below
\newacronym[longplural={Debugging Information Entities}]{DIE}{DIE}{Debugging Information Entity}
%
% The following example also uses options
\newacronym[shortplural={OSes}, firstplural={operating systems (OSes)}]{OS}{OS}{operating system}

\newacronym{ARD}{ARD}{autonomous rendezvous and
docking}
\newacronym{NASA}{NASA}{National Aeronautics and Space Administration}
\newacronym{MPC}{MPC}{Model Predictive Control}
\newacronym{MPVS}{MPVS}{Model Predictive Visual Servoing}
\newacronym{VS}{VS}{Visual Servoing}
\newacronym{SRL}{SRL}{Space Robotics Laboratory}
\newacronym{DOF}{DOF}{degree of freedom}
\newacronym{FOV}{FOV}{field of view}
\newacronym{LQR}{LQR}{–LinearQuadratic Regulator}
\newacronym{IBVS}{IBVS}{Image-Based Visual Servoing}
\newacronym{PBVS}{PBVS}{Position-Based Visual Servoing}
\newacronym{ICP}{ICP}{Iterative Closest Point}
\newacronym{PnP}{PnP}{Perspective-n-Point}
\newacronym{GPU}{GPU}{graphics Processing Unit}
\newacronym{LLM}{LLM}{Large language model}
\newacronym{ROS}{ROS}{Robot Operating System}
\newacronym{GOICP}{GO-ICP}{Globally optimal-ICP}
\newacronym{GICP}{GICP}{Generalized Iterative Closest Point}
\newacronym{RANSAC}{RANSAC}{RANdom SAmple Consensus}
\newacronym{CAD}{CAD}{Computer Aided Design}
\newacronym{TOF}{TOF}{Time-of-Flight}
\newacronym{ATMOS}{ATMOS}{Autonomy Testbed for Multi-purpose Orbiting Systems}
\newacronym{EKF}{EKF}{Extended Kalman filter}
\newacronym{SITL}{SITL}{software in the loop}
\newacronym{HITL}{HITL}{hardware in the loop}
\newacronym{PCL}{PCL}{Point Cloud Library}
\newacronym{RGBD}{RGB-D}{Red Green Blue-Depth}
\newacronym{RGB}{RGB}{Red Green Blue}
\newacronym{MSE}{MSE}{Mean Squared Error}
\newacronym{BnB}{BnB}{branch-n-bound}
\newacronym{GHT}{GHT}{Generalised Hough transform}
\newacronym{SVD}{SVD}{Singular value decomposition}
\newacronym{PCA}{PCA}{principal component analysis}
\newacronym{SIFT}{SIFT}{Scale Invariant Feature Transform}
\newacronym{SHOT}{SHOT}{Signature of Histograms of OrienTations}
\newacronym{FPFH}{FPFH}{Fast Point Feature Histograms}
\newacronym{SURF}{SURF}{Speeded-Up Robust Features}

% note the use of a non-breaking dash in long text for the following acronym
\newacronym{IQL}{IQL}{Independent ‑QLearning}

% example of putting in a trademark on first expansion
\newacronym[first={NVIDIA OpenSHMEM Library (NVSHMEM\texttrademark)}]{NVSHMEM}{NVSHMEM}{NVIDIA OpenSHMEM Library}

\newacronym{KTH}{KTH}{KTH Royal Institute of Technology}

\newacronym{LAN}{LAN}{Local Area Network}
\newacronym{VM}{VM}{virtual machine}
% note the use of a non-breaking dash in the following acronym
\newacronym{WiFi}{‑WiFi}{Wireless Fidelity}

\newacronym{WLAN}{WLAN}{Wireless Local Area Network}
\newacronym{UN}{UN}{United Nations}
\newacronym{SDG}{SDG}{Sustainable Development Goal}
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