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Abstract

Future space missions face increasing safety challenges as Earth’s orbit becomes fuller
and fuller: With the growing number of satellites, the risk of collisions rises, potentially
requiring emergency de-orbiting maneuvers when actuators fail in order to prevent crashes
and further damage. Meanwhile, space missions are becoming safer and more cost-effective
through the deployment of small autonomous space robots, such as NASA’s Astrobee.
These systems perform routine tasks inside space stations that would otherwise require
human astronauts. In case of actuator failures, however, they must also maintain control
to protect both equipment and the space station itself. This thesis thus explores control
methods for thrust-propelled space robots under actuator failures, using the example of
the KTH Freeflyers.

The analysis reveals that while single actuator failures can be addressed by adapting
existing control schemes, multiple failures introduce nonholonomic constraints and prevent
the simple compensation of an actuator. To address this, micro-orbiting is proposed as
a strategy that allows to ensure stability for up to three simultaneous actuator failures.
The idea is to bring the system on a small scale orbit in which the actuator failures and
the orbit dynamics cancel out. A new model is derived, eliminating the nonholonomic
constraints by controlling the orbit center.

Three controllers are designed: a feedback-linearization-based controller for setpoint-
stabilization and two Model Predictive Control (MPC) based controllers for trajectory-
tracking. One of the MPC controllers uses a novel approach of designing the terminal
ingredients that is based on explicit MPC (eMPC) and shows to increase the terminal set
drastically.

Simulation results indicate that this second MPC controller is preferred if hardware
requirements are met, while the feedback-linearizing controller could serve as an
alternative with low-computational needs if necessary.

Keywords

Model Predictive Control, Space robotics systems, Failsafe control, Actuator failure, Non-
holonomic constraints, Astrobee
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Sammanfattning

Framtida rymduppdrag står inför allt större säkerhetsutmaningar i takt med att jordens
omloppsbana blir allt fullare: Med det växande antalet satelliter ökar risken för kollisioner,
vilket kan kräva nödmanövrer för att ta ner satelliten ur omloppsbanan när ställdonen
inte räcker till för att förhindra krascher och ytterligare skador. Samtidigt utvecklas
rymduppdragen för att bli säkrare och mer kostnadseffektiva genom att små autonoma
rymdrobotar, som NASA:s Astrobee, används. Dessa system utför rutinuppgifter inuti
rymdstationer som annars skulle kräva mänskliga astronauter. I händelse av fel på
ställdon måste de dock också behålla kontrollen för att skydda både utrustning och själva
rymdstationen. I den här avhandlingen undersöks därför kontrollmetoder för tryckdrivna
rymdrobotar vid fel på ställdonen, med KTH Freeflyers som exempel.

Analysen visar att medan fel på ett enstaka ställdon kan hanteras genom att anpassa
befintliga styrsystem, medför multipla fel icke-holonomiska begränsningar och förhindrar
enkel kompensation av ett ställdon. För att hantera detta föreslås micro-orbiting som en
strategi som gör det möjligt att säkerställa stabilitet för upp till tre samtidiga ställdonsfel.
Tanken är att föra systemet till en småskalig omloppsbana där fel på ställdonen och
omloppsbanans dynamik neutraliseras. En ny modell härleds, som eliminerar de icke-
holonomiska begränsningarna genom att styra omloppsbanans centrum.

Tre regulatorer designas: en feedback-lineariseringsbaserad regulator för setpoint-
stabilisering och två MPC-baserade regulatorer (Model Predictive Control) för
banföljning. En av MPC-styrenheterna använder ett nytt tillvägagångssätt för att utforma
terminal ingredients som baseras på explicit MPC (eMPC) och visar sig förstora terminal
sets drastiskt.

Simuleringsresultaten visar att denna andra MPC-styrenhet är att föredra om
hårdvarukraven uppfylls, medan den feedback-lineariserande styrenheten kan fungera som
ett alternativ med lägre beräkningskrav om det behövs.

Nyckelord

Modellprediktiv reglering, rymdrobotsystem, felsäker reglering, aktuatorfel, icke-
holonomiska begränsningar, Astrobee
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Chapter 1

Introduction

When designing a technical system, the failure-free state is usually considered first - after
all, failures are not wanted and should ideally be prevented by robust design. However,
full or partial system failures happen from time to time and is important to know how to
deal with them. This matters particularly when the systems are deployed in environments
where a fault can cause harm to humans. A lot of effort has therefore been put into the
development of failsafe automotive systems or multicopters.

Despite these advancements in terrestrial applications, for space, there are surprisingly
few results despite the space industry being more and more active in recent years. This
gap is particularly unexpected given the inherent risks of space exploration.

This thesis contributes at closing this gap by proposing methods to control autonomous
space robots even under actuator failures. It also proposes a novel way of calculating
terminal sets based on explicit MPC. This method is in the present work mostly explained
with the actual application in mind, while a full formal explanation of the method is still
pending. As one of the main achievements of the thesis, it can nevertheless also be useful
for other systems apart from space robots.

In this chapter, the background and the target system of this work are presented in
Sections 1.1 and 1.2, followed by an overview of failsafe control in Sections 1.3 and 1.4.
Afterwards, the contributions of the work are posed in Section 1.5 and finally the
mathematical notation is stated in Section 1.6.

1.1 Motivation and Background

The travel to space has been a risky journey since the first humans were launched into the
orbit, and it still is today. In the recent decade, a renewed interest into space has been
found, leading to projects such as the Artemis program, lead by the American National
Aeronautics and Space Administration (NASA)[1]. The ambition in this project is to
build a stationary base on the Moon and a space station in the Moon’s orbit, where the
latter is planned to eventually serve as a gateway to Mars.
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To support these ambitious goals while minimizing risks, autonomous robots have a huge
potential for deployment. First of all, there is no human risk and additionally, they are
even cheaper than sustaining a human at the station. A use case could, for example, be
the maintenance of space stations.

Beyond lunar exploration, challenges also exist closer to home. In our own orbit around
the Earth, we can see an ever-increasing number of satellites and space stations. The
risk of collisions is hence rising with possibly disastrous consequences (ref. the Kessler
syndrome, [2]). Besides of the development of techniques to clean space debris [3, 4], there
is a need for precautionary methods to avoid crashes.

A study analyzed 129 spacecrafts that suffered from on-orbit failures between 1980 and
2005 [5]. It concluded that around 30% of the attitude and orbit control subsystems
failures stem from actuator failures which makes it an important topic to be studied.
Fewer redundancies in the new type of autonomous space robots due to space and cost
constraints make the matter even more important.

Thus, to enhance safety in space for future missions, it is necessary to develop methods
that enable the control of robots in zero- or microgravity conditions, even in the presence
of actuator failures. This thesis focuses on advancing the theoretical foundations and
practical applications of robust control strategies for space robotics, contributing to the
ongoing efforts to make space operations safer and more reliable.

1.2 Target Platform

The arguments for the automation of space missions have of course also been thought
of by the responsibles at the NASA. This has lead to the Astrobee program [6] whose
goal is to automate routine tasks using small mobile robots inside of the International
Space Station (ISS). These robots, called Astrobees like the program itself, have first been
launched inside the ISS in 2019 and since then used by scientists and engineers to perform
experiments in microgravity.

Figure 1.1: One of three NASA Astrobees at the ISS. Link to image: https://images.n
asa.gov/details/iss071e046284

As getting access to this research platform is costly and difficult, KTH has built a simulator
that mimics the properties of the Astrobee [7]. The Space Robotics Lab (SRL), opened

https://images.nasa.gov/details/iss071e046284
https://images.nasa.gov/details/iss071e046284
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this summer and one of the biggest of its kind in Europe, is part of the DISCOWER
(Distributed Control in Weightless Environments) project. Currently, the lab houses
three robots called freeflyers that move frictionlessly in two dimensions, thus imitating
the three-dimensional Astrobees. The frictionless motion is achieved by using a very
smooth and flat surface, allowing the robots to hover through air bearings on a very thin
air film. Propulsion is accomplished, as with the Astrobee, through air thrust. The robots
have been designed in dimensions, mass and maneuvering capabilities to be comparable
to the Astrobee.

Even though the eventual target system is supposed to be the Astrobee, this work uses
the freeflyers at SRL. This choice allows for the development and theoretical validation
of control algorithms in a controlled environment that closely mimics key aspects of the
Astrobee’s operational conditions.

1.3 Failsafe and Robust Control

In the following, an overview of failsafe and robust control is given. The differences
between both are highlighted and a literature review of the applications of failsafe control
is made.

Dealing with uncertainty is an inherent, one could even say the inherent problem in
control theory. From the very start, the goal was to control systems under modelling
errors, noise or perturbing influence from the surroundings. With time, it was noticed
that state-space models and control are not robust enough for all applications, which lead
to the development of H∞ control in the 80s and 90s [8]. When the development of Model
Predictive Controllers (MPC) started, soon methods for robust MPC were investigated
such as tube-based MPC [9].

In recent years, the interest in controlling uncertain systems was even more extended:
While state-space and MPC controllers assume that the model and environment are very
similar, H∞ control and robust MPC allow for higher uncertainty. Since the start of
this century, researchers investigated more and more not only robust, but even fail-safe
control.

It is important to make a clear distinction between robust and failsafe control: Robust
control considers systems that are subject to uncertainty, for example because of large
noise. The system itself is however, explicitly or implicitly, assumed to be able to handle
the control problem and the model is assumed to be sufficiently exact to design a suitable
controller.

In failsafe control, in contrast, this is not necessarily given any more: If certain
actuators fail, for example, additional constraints can appear that forbid certain motions.
Alternatively, assumptions that were made for the control of the functional system may
become invalid which can lead to the need of a reformulation of the model or the control
objective. In some cases, a loss of controllability is possible. Thus, failsafe control deals
with a much larger room for uncertainty and extends the efforts to address this uncertainty
even further.
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1.4 A Review of Failsafe Control

Failsafe control is mainly applied in high-risk applications. A lot of attention was given to
automotive and aerial systems where human lifes can be at risk. The efforts can be split
up into two categories: On the one hand, there is the branch of failsafe control that stems
from underactuated and nonlinear systems. This kind of theory was mainly developed at
the end of the last century and, in the context of failsafe control, applied to space systems.
On the other hand, there is the modern failsafe control that builds on modern control
theory. It uses optimization-based controllers, e.g. MPC in different variations, and the
calculation of occupancy, resp. safe and unsafe sets.

A look at existing research shows that the potential of MPC to deal with failures has been
noticed early: Due to the flexibility of the framework, "simply" the internal model needs
to be updated [10]. The problem is rather to ensure stability under the new constraints
which is seldomly done in a theoretically thorough way, as shown in the following.

The following sections give an overview of failsafe control by topic. The first results on
failsafe control using MPC were achieved for aerospace systems in the early 2000s. The
existing works mainly show proofs-of-concept without formal proofs. Later in the 2010s,
the interest in autonomous driving rose. This led to the development of control strategies
that could take the inherent insecurity into account which stems from the interaction
with other traffic participants. Failsafety was achieved in the sense that the controllers
could autonomously react to unexpected movements of others. The interest in failsafe
control for UAVs and multicopters has been researched since the 2010s and is still of high
interest today. The last field of research presented is the failsafe control of spacecrafts
which peaked in the 90s and early 2000s and received some renewed interest in recent
years.

1.4.1 Aerospace Systems

The application of failsafe control in aerospace systems has been a subject of research in
the early 2000s. This field has primarily focused on addressing failures in aircraft control
surfaces - i.e. the ailerons, elevators and rudders that provide roll, pitch and yaw control
- and developing strategies for emergency maneuvers.

In [11], pre-stabilized MPC is applied to the El Al Flight 1862 crash scenario, highlighting
that MPC might have prevented the accident. However, the authors admit that in
practice, quickly finding the necessary parameters to make the controller work is difficult.
The work also lacks rigorous proofs of stability and retracts to simulation results.

Another result from the start of nonlinear MPC theory is [12]. Here, different faults in
an airplane are considered and stabilized using MPC techniques. The focus of the work
is less on proving the stability of the proposed controllers and more on showing how the
adaption of the MPC scheme can be used in general to deal with faults and failures.

More recently, an MPC scheme for extreme maneuvers, s.a. tight turns and flips, and
emergency obstacle avoidance has been proposed [13]. The failure of control surfaces like
ailerons, elevator, or rudder is modeled by reducing their maximum rate of change by
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orders. While effective in simulations, the paper, as well as the others, shows no formal
stability proof. The paper also claims the ability to track infeasible trajectories. While
simulation results demonstrate this capability, the authors do not present a dedicated
methodology for ensuring the tracking of infeasible trajectories. Instead, the approach
relies on the inherent properties of MPC to get as close to a trajectory as possible.
Consequently, the limitations and conditions under which tracking infeasible trajectories
is achievable remain ambiguous.

1.4.2 Automotive Industry

As aforementioned, failsafety in the context of autonomous vehicles is often considered in
terms of the behavior of the other traffic participants. An important topic here is failsafe
trajectory planning (FTP), see [14, 15]. Safety is achieved based on analysis of reachability
resp. occupancy prediction under the dynamics of other participants. More advanced
solutions have combined stochastic MPC with FTP [16], enhancing the robustness of
autonomous driving systems. Some researchers have explored the combination of different
MPC algorithms, each with varying degrees of failsafety, performance, and optimality, to
create more versatile control systems [17].

Besides of autonomous driving, there are also papers that treat actuator failures in
vehicles: The advance of electric motors and cars allows for new vehicle architectures
such as Four-Wheel Independent Drive/Steering systems (4WIDS) where each wheel is
controlled independently by its own motor [18]. While this gives more degrees of freedom
regarding the maneuverability of the vehicle, the risk of instability rises if one of the
subsystems fails. Control methods that try to counteract this risk are reviewed in [18].
The methods used for ensuring maneuverability include classical nonlinear control s.a.
Sliding Mode Control [19, 20, 21] or gain scheduling for linear parameter-varying systems
[22].

Recently, also optimization-based solutions to the problem of actuator failures of 4WIDS
vehicles have been proposed. In [23], Nonlinear Model Predictive Control (NMPC) is
applied to four-wheeled vehicles under actuator faults. The faults are modeled as power
steering failure (50% reduction in steering output) and uncertainty in the rear cornering
stiffness (50% reduction in the rear cornering stiffness parameter). The goal is to bring the
vehicle safely to the side of the road. In a first step, the fault is assessed and a finite state
machine is used to determine an appropriate lane changing strategy. In the following, the
NMPC controller is used to execute the strategy while taking the failure into account. The
stability of these controllers, however, is not analyzed theoretically - instead, simulations
and scenario testing are employed to assess and validate their performance and reliability.

1.4.3 Unmanned Aerial Vehicles (UAV) and Multicopters

Small multicopters have gained popularity since the end of the 2000s and soon failsafe
controllers have been developed that can deal with the loss of actuators. In [24], feedback-
based controllers are designed for quadrocopters under the loss of one, two or even three
actuators. The idea is to analyze the systems under failures for possibly periodic solutions
for certain variables. It is found that if certain control goals such as the control of the yaw
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axis are given up on, the quadrocopter can still be kept in the air and safely landed. At
the same time, a periodic solution can occur for the non-controlled variables. The control
structure employed a cascaded design with an outer loop for position control and an inner
loop for attitude control. This separation allowed for high-frequency attitude control to
maintain stability while the slower outer loop guided the overall position.

Building upon this work, [25] develops a fault detection architecture that, when combined
with the controller, resulted in a fully failsafe system. Both studies validated their
designed controllers both through a proof of stability and experimental implementation
on a real system, demonstrating the practical applicability of their approaches.

The problem considered in [26] is that controllers based on (N)MPC are potentially a
good solution to dealing with actuator failures or other constraints. They give however
cause for concern that the model needs to be fairly accurate to be suitable for MPC. Thus,
the paper shows the development of an observer that is exact enough to be suitable for
an observer-controller system that uses MPC. It concludes that it is possible to design
suitably well-working observers, but shows stability only empirically through simulations.

One of the few studies to implement MPC methods on a real UAV system was conducted
by Nan et al. [27]. They addressed the complete failure of one rotor in a quadcopter using
NMPC. Their implementation allowed for quick switching from the fault-free to a faulty
case by discarding yaw motion control (similar to [24]) and adjusting the cost matrices
accordingly. The latter allows to abstain from reloading and initializing a completely
new controller, making the switching process from the nominal to the faulty case very
fast. While stability was established through tuning and testing rather than theoretical
analysis, the results were impressive. The NMPC controller successfully leveraged
nonlinear dynamics to stabilize the quadcopter even during agile flight maneuvers like
loops.

A similar NMPC-based approach is applied in [28] for the failure of one rotor of a
hexacopter. This paper includes an Extended Kalman filter for fault identification and
equally considers the terminal cost as a tuning parameter without direct theoretical
justification. Although the impact of a single motor failure is generally less severe for
a hexacopter compared to a quadcopter, their work further demonstrated the versatility
of MPC-based failsafe control strategies in multi-rotor UAV systems.

1.4.4 Space Systems

The control of spacecrafts under actuator failures is closely related to the control of
underactuated spacecrafts, as a failed actuator can be turned off and the system becomes
underactuated. Most literature on underactuated spacecraft control focuses on attitude
control, primarily using nonlinear control methods to establish stability. These studies
predominantly date from the 1980s to early 2000s.

There are two ways of controlling the attitude of satellites, either through momentum
wheels or through thrusters [29, ch. 3.1]. Momentum wheel failures do not necessarily
affect position control, whereas thruster failures impact both translational and rotational
control. As thrusters affect both motions, the control is usually decoupled into resulting
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forces and torques and a subsequent module, called the control allocator, restores the
physical thrust forces. This is traditionally done for the nominal control without failures
as well as for the underactuated one. However, the previously mentioned control for
underactuated systems schemes suffer from two problems:

Firstly, it has been shown that for underactuated spacecrafts, the decoupling can lead
to infeasible combinations of forces and torques that the control allocator may not be
able to produce [30, 31]. And secondly, most of the proposed methods do not consider
actuator constraints, thereby producing control signals that are not necessarily practically
applicable, even without considering the control allocator.

Nevertheless, some of the results are cited here for the sake of completeness: The first
results on stabilization of underactuated spacecraft dynamics were performed in [32].
There, statements on the controllability of rigid bodies with momentum exchange devices
and gas thrusters were established. The result was that the attitude stabilization is only
possible with three or more momentum exchange devices or two or more independent
paired (jet) thrusters. Controllability in the case of thrusters further requires the two
pairs, resp. four individual thrusters, to satisfy additional constraints on the geometry of
the thruster positioning. The restriction to thruster pairs also implies that if one thruster
of a thruster pair fails, the other (functioning) one also needs to be turned off.

The next few papers all build on these results of [32] and have the same implications.

First of all, it has been shown that if spacecrafts are only controlled with the two
independent thrusters from [32], then the feedback cannot be smooth [33]. However, a
controller based on geometric control theory is proposed, which controls two out of three
Euler angles. Further efforts lead to a hybrid controller for underactuated spacecrafts
with two momentum wheels [34]. This controller stabilizes any equilibrium attitude in
finite time if the total angular momentum vector of the system is 0. Thus, it does not
provide full stabilization but rather reorientation if the system is already at rest before the
control law is applied. In another approach, an underactuated spacecraft is detumbled
using a variable structure controller and afterwards reoriented using a series of rotations
performed by linear feedback [35].

Newer results are a switching control scheme that globally asymptotically stabilizes the
attitude and angular velocities of an underactuated spacecraft [36]. Another more recent
work addresses the attitude control of an underactuated spacecraft using perturbed
feedback linearization [37]. The inverse that arises during feedback linearization is
damped, which yields stability within a domain of attraction. The piecewise-smooth
control law stabilizes the system near zero error, but not exactly to zero. As such, it does
not contradict the results of [33], although the remaining error can be made arbitrarily
small.

As all of these papers build on [32], none of these can exploit the full potential of the
actuators. In these approaches, when one thruster fails, the opposite thruster must also
be deactivated, leading to suboptimal utilization of the remaining actuators.

It should be noted that while these control laws were developed, systems as the Astrobee
were not yet thought of. The controllers were instead designed for satellites in Earth’s
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orbit, with very different requirements: First of all, the reaction does not need to be
fast as satellites are typically far away from each other. Collision avoidance or other
fast maneuvers are therefore not necessary. In fact, due to limited fuel generally slow
maneuvers are preferred [29, ch. 3.1] wherefore actuator constraints are less important.
The full utilization of all inputs is thus not as important. Additionally, the Astrobee
belongs to a lightweight class of systems with fewer redundancies. For satellites, in
contrast, hardware redundancies are more common and failures do not need to be
compensated with advanced control method in all cases.

Developing explicit control laws capable of handling non-paired thrust actuators presents
significant theoretical and practical challenges. To the best of the authors’ knowledge,
explicit methods addressing this issue have not yet been proposed. However, the
development of implicit optimization-based controllers has yielded some promising results
in the control of underactuated systems. These approaches actually exploit the full
dynamics of the system and will be discussed in the following.

An analysis of the SPHERES project that preceded the Astrobees showed that the loss of
a single actuator can already imply not only the emergence of nonholonomic constraints,
but even the loss of small-time local controllability [30]. This happens even though the
SPHERES have more than two remaining thruster pairs. Still, this result does not
contradict [32] as the work considers the concurrent control of position and attitude
together.

The author continued his work with the paper that comes closest to the issue treated
in this work [31]. It considers the combination of translational and rotational control of
spacecrafts and uses MPC to deal with the constraints. Its main disadvantage is that
it uses the terminal set {0}, i.e. it requires the optimizer to steer the system to the
origin within the control horizon. It is well known that, while this is probably the most
straightforward way of ensuring stability, this method suffers from small feasible sets and
the need of very long prediction horizons. Thus, it is not always possible to implement on
constrained hardware. Additionally, the controller does not consider tracking which can
be advantageous for bringing a damaged system back to a point where it can be repaired.

In the last four years, Aguilar-Marsillach et al. [38, 39, 40, 41] have published several
papers on spacecraft rendezvous in the case of actuator failures. The central concept in
these papers is the calculation of unsafe sets that will lead to a collision if one or multiple
actuators fail. This is achieved using reachability analysis and the calculation of backwards
reachable sets to determine initial states that would result in collision. The papers explore
different types of safety, such as passive safety (where the chaser naturally drifts past the
chased) or abort safety (where collision is avoided using remaining thrusters). They
also consider various scenarios, including elliptical orbits and near-rectilinear halo orbits
around the Moon, as well as methods to reduce fuel consumption.

While these papers do not provide a formal stability proof, established results strongly
suggest that finding a proof of stability for the nominal system is possible. However, for
the system under failures this is no longer guaranteed, as will become clear in the course
of this work.
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In the context of the papers, this lack of formal stability is however not a problem: Their
objective is to find a controller that either guarantees to reach the target, or that aborts
the mission while preventing damage to the chased spacecraft if a failure occurs. What
happens to the spacecraft that is experiencing the failures is not the primary focus of their
work. Thus, although these papers are very interesting in general, they address a different
question than the one considered in this work. It can be noticed that these papers, based
on the theory used, relate most to the ones on FTP for autonomous vehicles.

1.4.5 Conclusion

Generally, both methods from nonlinear control as well as MPC have been applied for
failsafe control under actuator failure in the last decades. If the stabilization under
failure is done with feedback-methods, more system analysis is usually performed and
the resulting controllers can be shown to be stable. One of their shortcomings is however
that a lot of them do not consider actuator saturation.

In recent years, the development went towards MPC-based solutions due to the ease of
incorporating constraints. While these controllers prove to work in practice, they usually
lack stability guarantees or if not, suffer from high computational requirements. As will be
shown in this work, it is possible to ensure the stability of an MPC scheme under actuator
failures with comparatively little online computational load. In order to do this, however,
the control designer has to deal with the underlying, nonlinear and underactuated model.

It has also been shown that few failsafe control methods exist for the modern class of
small autonomous space robots. Existing methods mostly target satellites with different
requirements that are not designed to perform fast evasion maneuvers and lack the
possibility to use the full set of actuators. Despite its importance for the safety of future
missions, the control of mobile autonomous space robots is thus underexplored.

Based on these results, the objective of the thesis are shown in the following section,
followed by the main contributions of this work.

1.5 Contributions

The last section motivated a new type of small, agile space systems that handle routine
and maintenance tasks. Their potential for future space missions has been underlined
concerning the reduction of risk and costs of space missions. Furthermore, it has been
shown that current control schemes cannot effectively handle actuator failures for these
kinds of systems which motivates the need to develop such methods.

Objectives In order to tackle this problem, methods are developed to handle actuator
failures of the freeflyers, thus developing the fundamentals of fail-safe control for future
space robotic systems. The objective is to design a controller that can avoid crashes even
under actuator failures and is able to autonomously navigate the system back to a place
where it can be repaired. The original mission is aborted and original control objectives
can be disregarded. All this should be achieved while simultaneously being able to show
the stability of the developed controller. The latter is necessary to formally ensure mission
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safety and guarantee the system’s reliable operation during the return journey. Such a
system can then become part of a truly autonomous space station.

Scope Throughout the work it is assumed that the actuator failure is known. It has
been shown in the previous section that such methods exist and are already used for
MPC schemes under actuator failures. The development of fault detection methods is
therefore not part of this thesis.

Overview of the work In order to fulfill the objectives, the work uses the following steps:

Step 1 Modeling of the freeflyers with and without actuator failures (Chapter 3).

Step 2 Deriving properties that hold for all combinations of actuator failures
(Section 3.3).

It turns out that under different combinations of actuator failures, different constraint
sets for the resulting forces and torque follow of which some are nonholonomic. Due to
the quantity of different possible nonholonomic constraint cases, it is shown that proving
stability for every single case may not be infeasible, but at least practically undesirable.
Instead, it is shown that if the system is brought into a small scale orbit, called micro-
orbit, all possible cases for up to three failed actuators can be treated. Some cases for
more than three actuators are also possible to control.

Step 3 Proposition of micro-orbiting and derivation of the orbit model (Chapter 4).

Based on this model, three different controllers are presented of which all control the
position as well as the attitude. The first one is a feedback linearizing controller that can
stabilize the system at a desired set point under satisfaction of the actuator constraints.
The other two controllers are NMPC controllers with the different terminal ingredients.
The first one is designed, borrowing from established MPC controllers, using a linear
terminal controller after a feedback linearization step.

As it was found that the resulting terminal set of this controller is too small, another
NMPC controller was designed. This one uses a non-linear terminal controller, for which
a terminal cost and set are derived. The terminal controller uses a feedback linearizing
controller with an added explicit MPC controller where the latter controls the resulting
linearized system under actuator constraints. Within the bounds of formulation of explicit
MPC and feasibility, the terminal set of the NMPC controller is quasi unbounded. It
should be noted that to the best of the author’s knowledge, such a controller has not yet
been proposed.

Step 4 Derivation of three different controllers, one of them using explicit MPC to
derive a large terminal region (Chapter 5).

Finally, the controllers are implemented and simulated. Based on the simulations, their
performance is evaluated.

Step 5 Simulation and evaluation of the controller performance (Chapter 6).

Contribution The main contributions of this work are therefore twofold:
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• Find a model and operating mode - i.e. micro-orbiting - such that it is possible
to handle the nonholonomic constraints appearing from actuator failures with
guaranteed stability.

Various controllers are possible for implementing this strategy: the controllers presented
in this paper, of course, but also controllers as described in Remark 28, for example. The
formulation for micro-orbiting for the 3D case is currently under development.

• As other MPC techniques proved insufficient to control the system, a method
using explicit MPC in the terminal controller was developed. This leads to a
quasi unbounded terminal constraint only limited by feasibility and the bounds
of formulation of explicit MPC.

This kind of controller is not limited to space robotics and can be applied to other systems,
although their theoretical capabilities and restrictions have yet to be explored. Some
known limitations are discussed in Section 5.3.3.

Remark 1: It should be noted that existing results from Section 1.4.4 that keep
spacecrafts rotating around an axis have nothing to do with micro-orbiting. They do
not rotate on an orbit but around themselves. Also, the objective is not to overcome
the nonholonomic constraints in order to maintain the position maneuverability.
Instead, limited controllability of solely the attitude is accepted and the rotating
axes are uncontrolled.

The rest of this work is structured as follows: After a short overview over the mathematical
notation in the next section, the fundamentals are presented in Chapter 2. Besides of
some mathematical foundation, the discussion mainly considers results on MPC. In the
following, the key steps as described above are shown. The thesis closes with a summary
of the results and looks ahead to questions that are still open.

1.6 Mathematical Notation

This work uses the following mathematical notations: The transpose of a matrix is denoted
by (·)T . 0n×m represents a n-by-m zero matrix and In×n a n-by-n identity matrix. A
diagonal matrix is expressed as:

diag
(
a1 a2 . . .

)
=

a1 0 . . .

0 a2 0
... 0

. . .


Matrix definiteness is represented by A ≻ 0 and A ⪰ 0 for positive definiteness resp.
semidefiniteness. For vectors and matrices, ∥(·)∥2 represents the Euclidean (L2) norm.

The set of non-negative integers (including zero) is symbolized by N+
0 . Named sets are

denoted with calligraphic letters. In the context of sets, the symbol ∂U signifies the
boundary and Int(U) the interior of a set U . In the context of functions, ∂ indicates a
partial derivative.
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Chapter 2

Fundamentals

After the statement of the problem and the contributions made in this work, some
necessary foundations are presented. The chapter starts in Section 2.1 with mathematical
foundations on polytopes and set operations that are useful in their context. In the
following, some definitions of system properties are given in Section 2.2. An introduction
to MPC and explicit MPC is provided in Section 2.3 and Section 2.4, respectively.

2.1 Mathematical Fundamentals

Convex polytopes are sets that can be described as linear inequalities. They are widely
used in mathematics and engineering, e.g. in convex optimization, but also especially in
Model Predictive Control. The notation as linear inequality is called the H-representation
and can be given as [42, Ch. 2.2.4]

P : {x ∈ Rnx|Ax ≤ b}. (2.1)

If nc is the number of inequality constraints, A is here a constant matrix of size Rnc×nx

and b ∈ Rnc is a vector.

Alternatively, the polytope can also be given in the V-representation. There, the corner
points of the polytope, the vertices, are used to describe the set. Every point that
is "between" a number of vertices belongs to the set. Both representations can be
converted into each other and there are freely available computer programs that can
do this automatically. The H-representation is mainly used in this work, but the V-
representation is also useful, e.g. to calculate linear projections of a polytope.

The Minkowski set summation and Minkowski (Pontryagin) difference are operations that
allow to "grow" resp. "shrink" one set by another. Using the two sets U ,V ⊂ Rnx , the
Minkowski sum can be defined as [9]

U ⊕ V = {u+ v|u ∈ U , v ∈ V}
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and the Minkowski difference as

U ⊖ V = {x|x⊕ V ⊆ U}.

A Minkowski difference that is particularly easy to calculate is P ⊖ S(r): Let P be a
polygon as in Eq. (2.1) and S(r) : {x|xTx ≤ r} be a sphere, then each inequality needs to
be parallelly shifted inwards by r. This is easy to see by the definition of the Minkowski
difference and the fact is visualized in Figure 2.1.

Figure 2.1: Minkowski difference P ⊖ S(r) with polygon P and sphere S(r).

The resulting polytope can be calculated as follows: Interpret the polytope in H-
representation as the combination of nc linear inequalities aix ≤ bi, i ∈ 1, . . . , nc. Here,
ai are the row vectors of A and bi the corresponding elements of b. Then the boundary
of each inequality can be written as a plane in Rnx in the form ai(x − vi) = 0 where
supporting vectors vi are introduced that satisfy aivi = bi.

Each plane is then moved inwards in the direction of the normal vector aTi of the plane
by distance r.

0 = ai

(
x− vi + ζ(ai, vi)r

ai
∥ai∥

)
(2.2)

The correct sign to move towards the set can be calculated as function ζ(ai, vi) with any
point ι ∈ Int(P) as

ζ(ai, vi) = −sign(ai(vi − ι)).

By multiplying Eq. (2.2) and performing this operation for all rows, a new matrix
inequality can be calculated. The matrix A will remain unchanged, but the vector b

is replaced.

Remark 2: Observe in Section 2.1 that r becomes a single direct parameter of the
resulting matrix inequality - all other values can be calculated directly. This will
become useful in Section 5.3.3.

Very similar results can be obtained if, for example, the set S(r) is replaced by a line
segment, i.e. the set L = {tw|w ∈ Rnx , t ∈ (−tmax, tmax) ⊂ R} with a fixed w ∈ Rnx . In
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this case, the expression can be given by

P ⊖ L = {x ∈ Rnx|0 = ai (x− vi + ζ(w, vi)w)}

As a last remark, it follows directly from the definition of the Minkowski sum and difference
that for any S(r1), the relationship S(r1) ⊆ P ⊖ S(r2) implies S(r1 + r2) ⊆ P , resp.
S(r1)⊕ S(r2) ⊆ P .

2.2 Control Fundamentals

In this work, the knowledge of certain fundamentals of linear control theory is presumed.
This includes the notion of Lyapunov stability for continuous and discrete-time systems,
the continuous and discrete-time Lyapunov equation and the Riccati equation for discrete-
time systems, including their conditions for solvability. In case of questions regarding these
topics, the book of Hespanha can be warmly recommended [43].

In the following, some definitions are given that consider certain system properties and the
feasibility of trajectories with respect to system dynamics. A system that is nonholonomic
has certain nonintegrable constraints. These can be defined as follows [44, p. 242
ff.]:

Definition 1 (Holonomicity and Nonholonomicity): Consider a system

ẋ = f(x1, x2, . . . , t)

with constraints

g(x1, x2, . . . , t) = 0

where f , g are smooth functions. These constraints are called holonomic constraints.
Every constraint that is not expressible like this is called a nonholonomic constraint.
In other words, nonholonomic constraints are nonintegrable.

A system that has nonholonomic constraints is called a nonholonomic system and the
property itself is called nonholonomicity.

It is important to know if nonholonomic constraints exist as Brockett’s Theorem states
that nonholonomic systems can not be stabilized using smooth time-invariant feedback
[45].

Dynamic feasibility is defined, following [46], as follows:

Definition 2 (Dynamic Feasibility): Let ẋ = f(x, u) be the dynamics of a system with
input constraints u ∈ U and state constraints x ∈ X . The trajectory χ(t) is called
continuously dynamically feasible if

• it is continuously differentiable and χ(t) ∈ X for all t ≥ 0
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• there exists the input ũ(t) ∈ Ũ that is necessary to perfectly follow the trajectory
for all t ≥ 0, i.e.

• χ(t) satisfies the system dynamics χ̇(t) = f(χ(t), ũ(t)) for all t ≥ 0 and
• the set of remaining control inputs Ū = U ⊖ Ũ contains zero in its interior.

It is called discretely dynamically feasible if

• it satisfies the system dynamics χ(k+1)δ = f(χkδ, ũkδ) at the sampling times kδ

with the step k and the sampling period δ,
• χkδ ∈ X and ũkδ ∈ Ũ for i ∈ N+

0 ,
• the set of remaining control inputs Ū = U ⊖ Ũ contains zero in its interior and
• χ(t) is continuously differentiable for all t ∈ [kδ, (k + 1)δ].

The interpretation of this is that on the one hand, there is enough control action to
perfectly steer the system along the trajectory. Additionally, there must always be some
spare degree of freely choosable control input to control the system towards the trajectory
under errors.

As a last note, the solution to the differential equation of a linear, time-continuous
autonomous system with x ∈ Rnx , A ∈ Rnx×nx and dynamics ẋ = Ax can be given
explicitly and is x(t) = eAtx(0) for every t ≥ 0 [47]. For a discrete-time autonomous linear
system xk+1 = Axk and same dimensions, the solution is xk = Akx0 for all k ∈ N+

0 .

2.3 Classic Model Predictive Control

Model Predictive control (MPC) is a modern optimization-based control technique. Its
main difference to traditional approaches is its ability to handle a wide variety of
constraints. MPC was originally used in process industry with slow dynamics, but has
been extended in the previous decades to fast-sampled systems. Today, MPC is considered
a mature technology with applications in many different areas [48].

MPC is an optimal control method in the sense that a constrained optimization problem
is formulated and solved at each sampling step. Depending on an initial state, an optimal
input sequence is computed that minimizes the control cost under satisfaction of input
and state constraints. In general, this solution cannot practically be found in a closed
form. Once the optimum has been found, only the first element of the sequence is applied
to the system before a new optimization with an updated initial state is computed. This
procedure is repeated for every step, leading to a so-called receding horizon strategy.

There are many different variants and formulations of MPC for a wide range of
applications. In this place, the standard formulation is presented, an extension for the
tracking of trajectories and finally explicit MPC, a closed-form solution for linear MPC.

2.3.1 Standard Formulation

The standard MPC is the common control problem of point stabilization at the origin. It
optimizes both the error as well as the control effort and takes input and state constraints



Fundamentals | 17

into account. The following statements are based on the overviews presented in the PhD
theses [49, 50, 51].

Consider a system with xt ∈ Rnx , ut ∈ Rnu and the system dynamics

xt+1 = Φ(xt, ut). (2.3)

The predicted state and input k steps into the future based on time step t are xt+k|t, ut+k|t
and will be abbreviated as xk, uk if the context is clear. The predicted trajectories of
state and input up to N − 1 with the finite horizon N are given in matrix-form as

X =
(
xT
k , x

T
k+1, . . . , x

T
k+N−1

)Tand

U =
(
uT
k , u

T
k+1, . . . , u

T
k+N−1

)T
,

(2.4)

respectively. The constraints are

xk ∈ X ⊆ Rnx , ∀k ∈ N+
0 , (2.5)

uk ∈ U ⊆ Rnu , ∀k ∈ N+
0 (2.6)

and can for example be linear inequalities, in which case X and U are polytopes.

The (scalar) cost is defined as

VN(x0) =
N−1∑
k=0

l(xk, uk) + lN(xN) (2.7)

with the stage costs l(xk, uk) and terminal cost lN(xN). It is assumed that the stage cost is
convex, l(0, 0) = 0 and there exists a class κa function1 αl(·) such that l(x, u) ≥ αl(∥x∥).
A common choice, which is also employed in this work, is a quadratic function with
symmetric, positive definite cost matrices Qx and Qu:

l(xk, uk) := xT
kQxxk + uT

kQuuk (2.8)

The terminal cost lN(xN) should satisfy similar constraints concerning positive definiteness
and the behavior at the origin, but these properties are discussed later in detail when the
stability of MPC is concerned.

This allows to formulate the standard MPC problem:

minimize
U

VN(x0) =
N−1∑
k=0

l(xt+k|t, ut+k|t) + lN(xt+N |t) (2.9a)

subject to xt+k+1|t = Φ(xt+k|t, ut+k|t) k = 0, . . . , N − 1, (2.9b)
(xt+k|t, ut+k|t) ∈ X × U k = 0, . . . , N − 1, (2.9c)

xt+N |t ∈ Xterm, (2.9d)
xt|t = x0 (2.9e)

1A function ακ : [0, a) → [0,∞) belongs to class κa if it is strictly increasing and ακ(0) = 0.



18 | Fundamentals

where the terminal constraint (2.9d) with the terminal set Xterm can be used together with
lN(xN) to enforce stability as will be shown soon. The set of feasible control sequences is
implicitly defined as {U |∃X s.t. (2.9b) - (2.9e) hold} while the set of feasible initial states
is the one that makes the former set nonempty.

By definition of the problem, the satisfaction of the constraints is only directly guaranteed
until k = N − 1. Additionally, this definition itself does not make any statements on
the stability of the resulting receding horizon scheme. While multiple approaches exist
to guarantee stability of the controller, the most widely used is the terminal cost and
terminal set approach.

The key idea is based on the finding that for the infinite-horizon MPC problem, the
system is asymptotically stable and the problem recursively feasible [52]. Therefore, lN(·)
is chosen so that VN(·, ·) is approximately equal to or an upper bound on the infinite
horizon cost in a region around the origin. The terminal set is chosen to be a subset of
this region such that all constraints are satisfied within the subset. One way to determine
a terminal cost and set is using a terminal controller. This is a known controller that can
locally stabilize the system within a certain region. For linear systems, for example, the
infinite-horizon LQR-controller and its corresponding cost function can be used.

Before a theorem on stability of MPC can be given, the definitions of recursive feasibility
and control invariant sets are necessary.

Definition 3 (Recursive Feasibility): The MPC problem (2.9) is recursively feasible if
the existence of a feasible solution with initial state xk implies that the MPC problem
is also recursively feasible if it is initialized with xk+1.

An important statement on recursive feasibility can be made using the notion of control
invariant sets [53]:

Definition 4 (Control Invariant Set): The set C ⊆ Rn is positively control invariant
for the dynamics in Eq. (2.3) and the control constraint uk ∈ U if

xk ∈ C ⇒ ∃{uk, uk+1, . . .} with uk ∈ U such that xk ∈ C ∀k ∈ N+
0 (2.10)

Theorem 1: If the terminal set Xterm is control invariant, then the MPC problem (2.9)
is recursively feasible.

Stability of a nonlinear MPC scheme can be guaranteed as follows [54, 55]:

Theorem 2 (Stability of Model Predictive Control): Consider the nonlinear system
xk+1 = Φ(xk, uk) subject to the constraints xk ∈ X , uk ∈ U for all k > 0 under
the Model Predictive Control (2.9). Consider the conditions

• The stage cost l(xk, uk) is continuous, l(0, 0) = 0 and lower-bounded by a class
κ∞ function α1 such that l(xk, uk) ≥ α1(∥xk∥) for all xk, uk.
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• The terminal cost lN(xN) satisfies lN(0) = 0, lN(x) > 0 ∀x ̸= 0 and lN(xN) is
continuous at xN = 0.

• X , U and Xterm are closed and contain zero in their interior.
• Xterm is control invariant under the given dynamics and constraints.
• For all x ∈ Xterm, at least one u ∈ U exists such that

lN(Φ(x, u))− lN(x) + l(x, u) ≤ 0. (2.11)

If all of the conditions are met, then the MPC controller asymptotically stabilizes the
system, i.e. xk → 0 as k → ∞.

2.3.2 Tracking Trajectories with MPC

In the standard MPC scheme, the system was controlled to a setpoint and the setpoint
was implicitly set to zero: ek = xk − 0 = xk. If instead a trajectory is supposed to be
tracked, the definition of the error changes to

ek = xk − χk (2.12)

where χk with k ∈ N+
0 is the trajectory to be tracked. This means that the error dynamics

depend explicitly on time, which needs to be addressed specifically. This is the next topic
discussed, with the results taken from [56] if not otherwise noted.

The tracking problem is here formulated in terms of the states. In this case, a necessary
assumption is

(a1) The reference lies within the feasible set of states, χk ∈ X ∀k ≥ 0.

Additionally,

(a2) The reference χt is dynamically feasible in the sense of Definition 2.

(a3) The input ũ(t) (ref. Definition 2) that is necessary to follow the trajectory perfectly
is known a priori.

Remark 3: An alternative formulation with a reference in the output values of the
system would lead to the assumption

(a1) Alternative The reference χt is contained in the pointwise image of X under the
output map.
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Introducing the new input ūt = ut − ũt allows to formulate the tracking MPC problem

minimize
Ū

N−1∑
k=0

l(et+k|t, ūt|t+k) + lN(et+N |t) (2.13a)

subject to xt+k+1|t = Φ(xt+k|t, ūt|t+k + ũt|t+k) k = 0, . . . , N − 1, (2.13b)
et+k|t = xt+k|t − χt+k|t k ∈ N+

0 , (2.13c)
(xt+k|t, ut+k|t) ∈ X × U k = 0, . . . , N − 1, (2.13d)

et+N |t ∈ Xterm, (2.13e)
xt|t = x0 (2.13f)

Note that this is essentially a compensation of the time-varying part such that the
remaining MPC problem is just a setpoint stabilization of the error through the remaining
input ūt.

The following assumptions ensure convergence of the tracking MPC [57, 58]:

(a4) The stage cost l(ek, ūk) is continuous, l(0, 0) = 0 and lower bounded by a class κ∞
function αm such that l(ek, ūk) ≥ αm(∥ek∥) for all (ek, ūk).

(a5) The terminal cost lN(eN) is positive semi-definite and continuously differentiable in
ek.

(a6) The terminal set Xterm ⊆ X is compact and time-varying.

(a7) For all x̃ ∈ Xterm and the considered sampling time δ > 0, there exists a piecewise
continuous admissible input uXterm ∈ U , such that for all τ ∈ [0, δ),

∂lN
∂e

· Φ(e(τ), uXterm(τ)) + l(e(τ), ū(τ)) ≤ 0 (2.14)

and the closed-loop solution fulfills x(τ) = x(τ, x̃|uXterm) ∈ Xterm, i.e. the terminal
region is control invariant.

Note that the last assumption is formulated in terms of the continuous-time dynamics
and not the discrete ones.

The main difference compared to setpoint stabilization is that Xterm is in general time-
dependent. A way to construct this is given in [57, 58]. If instead suitable assumptions
on the trajectory are made, it is possible to construct constant terminal sets at the cost
of conservativeness:

Let Ũ and Ū be

Ũ = {ũk|χk perfectly followed by ũk, k ∈ N+
0 } (2.15)

Ū = U ⊖ Ũ . (2.16)

Furthermore, choose Xterm such that it is control invariant for the system dynamics and
the control constraint Ū . Then, Xterm guarantees recursive feasibility for problem (2.13)
due to Eq. (2.16) and Theorems 1 and 2.
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The given assumptions ensure closed loop stability according to the following
theorem:

Theorem 3 ([57, 58]): If the optimal control problem (2.13) is feasible for the initial
time instant and the stage cost, the terminal cost and the terminal constraints satisfy
assumptions (a1) to (a7), then (2.13) is recursively feasible and the tracking error ek
converges to zero.

2.4 Explicit MPC

Up to now, the notion of MPC was always valid for both linear and nonlinear systems.
The solution for each step was implicit and only retrieved by numerically optimizing for
a given starting point. If the consideration is however restricted to linear systems with
convex polytopic constraints, the controller can be retrieved in an explicit form. The
control law turns out to be piecewise linear and continuous with a piecewise quadratic
and continuous cost function. This section is adapted from the seminal paper [59]. For
a good overview over applications and possibilities in explicit MPC (eMPC), the reader
may also be referred to [60].

Consider the discrete-time linear time-invariant system

xt+1 = Axt +But

yt = Cxt

(2.17)

and formulate the optimization problem as

minimize
U

V (U, xt) = xT
t+N |tPxt+N |t +

N−1∑
k=0

[xT
t+k|tQxxt+k|t + (ut+k|t)

TQuut+k|t]

subject to xt+k|t ∈ X k = 1, . . . , N,

ut+k|t ∈ U k = 0, . . . , N − 1,

xt|t = xt,

xt+k+1|t = Axt+k|t +But+k k ≥ 0,

xt+N |t ∈ Xterm

(2.18)

where X and U are polytopes defined by linear inequalities. A good choice for P is the
solution of the discrete-time algebraic Riccati equation

P = ATPA− (ATPB)(Qu +BTPB−1(BTPA) +Qx

which also directly gives a terminal controller

κ(x) = −Q−1
u BTPx.

The terminal set can be chosen as the largest control invariant set that satisfies the input
and state constraints.



22 | Fundamentals

The key idea of eMPC is twofold: First of all, it is noticed that up to step N , all inputs,
states and outputs can be written in a block form such as

X =


I

A

A2

...
AN−1

xt +


0 . . . 0

B 0 . . . 0

AB B . . . 0
...

... . . . 0

AN−2 AN−3 . . . B

U (2.19)

where the definitions of X and U remain as given in Eq. (2.4). Also the constraints and
the objective function of the MPC problem can be written in block form which leads to
the expression

minimize
U

V (xt) =
1

2
xT
t Y xt +

1

2
UTHU + xT

t FU

subject to GU ≤ W + Ext

(2.20)

where Y , H, F , G and E follow by direct computation.

The second important observation made is that the expression in Eq. (2.20) can in fact
be solved parametrically using the Karush-Kuhn-Tucker (KKT) conditions for optimality.
This is achieved using a state transform

z = U +H−1F Txt (2.21)

with which Eq. (2.20) can be equivalently rewritten as

minimize
z

Vz(xt) =
1

2
zTHz

subject to Gz ≤ W + Sxt.
(2.22)

Using the KKT optimality conditions for one specific point in state-space, a convex
polytopic set of points can be found in which all points have the same active constraints.
A constraint is active if the corresponding row in the condition Eq. (2.22) can be written
as an equality. Within this set, the control law and cost functions turn out to be linear
resp. quadratic.

As the ultimate goal is to find the control laws for all feasible states, an algorithm is
proposed based on these findings: Starting from an arbitrary point in state space, the
set with identical active constraints is identified (depicted in orange in the left panel of
Figure 2.2). The algorithm then proceeds by inverting one constraint at a time to generate
new candidate sets. For each new set, a point within its boundaries is selected, and the
active constraints for that point are determined. This process is iterated until the entire
state space has been covered and all control laws have been determined.

Once the whole state space has been covered, all control laws are available. In practice,
for applying the eMPC controller, first the region is checked in which the current state
lies and subsequently, the respective control law is applied.
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Figure 2.2: Progression of the explored regions in explicit MPC, starting from the set in
the center. Drawn in adaption of [59].

While the method allows to solve constrained optimal control problems in a parametric
form, the exploration algorithm can possibly take a lot of time. Especially for large
horizons and high-dimensional spaces, it scales unfavorably. This is why eMPC is usually
only applied in smaller problems. Another problem can be that checking for the correct
set might be cumbersome for a lot of active sets and for controllers with limited memory
space, even storing all possible sets can become a problem. Even though there are several
proposals to resolve both problems [61, 62, 63, 64], no final solution to all of these problems
has been found yet.

2.5 Conclusion

This chapter has discussed the necessary fundamentals of this work. After some
mathematical properties of polytopes and Minkowski sums, the definition of nonholonomic
constraints was given. Next, the dynamic feasibility of trajectories was defined and the
chapter concluded with two larger sections considering MPC and eMPC.

Next, the freeflyers are modeled and the effect of actuator constraints on their dynamics
is discussed. The result will be that the faulty system has nonholonomic constraints and
reduced controllability.
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Chapter 3

Modelling and System Analysis

In this chapter, the freeflyers will be modeled and analyzed. A focus lies on the analysis
of their behavior under actuator failures. The chapter starts with a description of the
system in Section 3.1 and presents the system equations in Section 3.1.2. In that section,
it is explained how the input space is structured and subsequently in Section 3.1.3, the
effect of actuator failures on the input space is analyzed.

The result is that for some scenarios, existing control methods are able to deal with the
failures. For other scenarios, this is not the case any more as nonholonomic constraints
appear. Thus, a more formal definition of the control problem that allows for a distinction
between already solved and unsolved cases is given in Section 3.2. The last section of this
chapter discusses the occurring challenges of ensuring stability under actuator failures.

3.1 Modeling

3.1.1 Actuator Failures

As stated in Section 1.2, the freeflyers at SRL serve as the simulation platform for this
work. The robots, as shown in Figure 3.1, hover on air-bearings on a sufficiently smooth
surface. Therefore, they behave as the planar version of a 3D Astrobee in microgravity.

The freeflyers are not only made hovering through air pressure, but as Astrobees, they
are also propelled by it. By pushing out air into one direction, the system accelerates into
the opposite one.

In the case of the Astrobee, the necessary air pressure is created through a central
compressor. At several points on the robot, so-called dual flapper nozzles are installed
[65], see Figure 3.2. These gate-shaped structures open and close to cover the opening
of the outflowing air, determining the resulting force through the width of the free area.
Through the positioning of several nozzles on different sides of the robot, maneuverability
into all directions and orientations is ensured.

The freeflyer, in contrast, uses an air tank and solenoid valves that open and close
discretely and is controlled using Pulse Width Modulation (PWM) [7, p. 62]. Also
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Figure 3.1: The freeflyers at
the KTH Space Robotics Lab
(SRL).

Figure 3.2: The dual flapper nozzle used in the
Astrobee. The currently half-opened gates are
colored in orange. Image taken from [65].

here, there are multiple independent thrusters on different sides of the robot so that the
full motion becomes possible. Figure 3.3 shows the resulting forces for the freeflyer.

The difference in thruster construction affects the behavior under actuator failure: For
the freeflyers, the valve is in two discrete cases either fully open or fully closed, i.e. either
the maximal force is applied on the robot or no force at all. This naturally also holds for
actuator failures.

For the Astrobee in turn, there is a range of continuous failure scenarios that can possibly
occur: On the one hand, the compressors could fail, the motors actuating the nozzles
break or the feed lines for the thrusters could break. But also the nozzles could get stuck
or the communication between the controller and one thruster could be disturbed. In this
case, the uncontrollable force could be anywhere between zero and the maximal thrust.
In order to maintain generalizability to the Astrobee, the latter case is used in the work.
For later reference, the following definition is made:

Definition 5 (Actuator failure): An actuator failure, in the context of this thesis,
is the failure of an actuator that renders the actuator uncontrollable. It appears

F1,1

F1,2

F2,1

F2,2

F3,1 F3,2

F4,1 F4,2

F1F2

F3

F4

x
y

Figure 3.3: The thrust forces acting on the robot.
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unpredictably, can affect any of the actuators and multiple failures can be present at
the same time. Every failed actuator can propel the system by a non-manipulable
force between zero and the maximum thrust and the force is constant from the time
it occurs. In accordance with Section 1.5, failures are known.

Remark 4: Even though it is important to model all possible failure-cases, the analysis
later in this chapter shows that exactly the extreme scenarios (fully opened/closed)
are the ones of the highest interest.

3.1.2 System Equations With and Without Actuator Failures

With Definition 5, the system can be modeled with and without actuator failures. As
any manipulable value that can appear for the working actuators can also appear for the
non-manipulable failed actuators, it is especially important how the inputs are modeled.
Therefore, the following section does not only present a model of the system, but also
argues for the chosen formulation.

In order to be able to state the system equations, a couple of variables need to be
introduced first: The states x1 and y1 denote the position in x- and y-coordinates, x2

and y2 in turn are the velocities in the respective directions. α is the orientation as angle
w.r.t. the global x-axis and ω is the angular velocity. The time-dependence of these values
is not written down explicitly.

Besides of the states, the system constants are the mass m, the moment of inertia J and
the lever d of each thruster w.r.t. the center of mass. The matrix R is a rotation matrix
of the form

R =

 cosα sinα 0

− sinα cosα 0

0 0 1

. (3.1)

This stated, the continuous-time dynamics can directly be derived from Newton’s law as
follows:

f(x) =



ẋ1

ẏ1
α̇

ẋ2

ẏ2
ω̇

 =



x2

y2
ω

0

0

0

+

(
03×3

R

) 1
m

0 0

0 1
m

0

0 0 1
J

Fx

Fy

T

+ Ffault

 (3.2)

In this model, the inputs to the system are the resulting forces and torque Fx, Fy and T

in the robot’s frame of reference. Ffault is the faulty force that stems from failed actuators
and, in anticipation of Eq. (3.7), Ffault ∈ Ufault. Compared to Figure 3.3, these are not
the physical inputs Fi,j with i ∈ 1, . . . 4 and j ∈ 1, 2 from the thrusters. The relationship
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Figure 3.4: Schematic of the freeflyers.

between the resulting forces and the physical thrust inputs is simply a linear map

F =

Fx

Fy

T

 = D



F1,1

F1,2

F2,1

F2,2

F3,1

F3,2

F4,1

F4,2


= DFi,j (3.3)

and can be given asFx

Fy

T

 =

1 −1 1 −1 0 0 0 0

0 0 0 0 1 −1 1 −1

d −d −d d d −d −d d


︸ ︷︷ ︸

D

Fi,j (3.4)

where D has full row rank.

Using the representation of the input as Fi,j directly for the control would be
straightforward on one side: It contains the thruster forces explicitly and can therefore
be readily applied without extra steps. Also, the set of inputs can be described easily as
box constraints:

Fi,j ∈ Ui,j =

{
{0} if thruster i, j fails
[0, Fmax] if functional

(3.5)

and the closed input set Uphys is the Cartesian product of all Ui,j, i.e.

Uphys = U1,1 × U1,2 × . . .× U4,2 (3.6)

Remark 5: Equivalently, it follows that Ffault is contained in

Ffault ∈ Ufault = DF fault
i,j (3.7)



Modelling and System Analysis | 29

where

F fault
i,j =

(
F fault
1,1 F fault

1,2 . . . F fault
4,2

)T (3.8)

with

F fault
i,j ∈

{
{0} if thruster i, j is functional
[0, Fmax] if thruster has failed.

(3.9)

The disadvantage of this representation, however, is that Fi,j is by Eq. (3.3) not uniquely
expressible in terms of F . In other words, there are multiple combinations of the eight
thrust inputs that result in the same motion. The minimum energy solution would be the
best combination as it prolongs the operating duration, but including this directly into a
control law adds another level of complexity.

It is therefore common to decouple the problem of finding a controller using the resulting
input (F ∈ R3 in this case) from finding a physical realization through the actual actuators
(Fi,j ∈ R8). The latter step is called control allocation, see Section 1.4.4. Albeit the main
problem considered in this work is the question of finding a suitable control law, a control
allocator was developed so that the control law becomes applicable. The allocator finds
the minimum-energy realization of the control input and can be found in Appendix A.

Remark 6: Using a Moore-Penrose pseudoinverse for control allocation might be the
first intuition as Eq. (3.3) is a linear map. This is not sufficient, though, as it does
not take the constraints into account. The analytical solution for the lowest-cost
realization of F through Fi,j can be calculated as shown in Appendix A. Another
procedure based on iteratively solving the Pseudoinverse until all constraints are
satisfied is also possible and presented in [30].

This simplification on one side comes with a complication on the other side: While
Eq. (3.3) describes how to map from Fi,j to F and Appendix A describes a mapping
into the other direction, also the whole sets of inputs need to be mapped: The projection
of the box-constrained input set of Fi,j does not yield a box-constraint for F any more,
but, anticipating Section 3.1.3, rather a polytope. Also the influence of a failing actuator
on the input set in R3 is not as immediately clear as for the higher-dimensional input.
Nevertheless, this trade-off is considered advantageous given the analytical benefits and
the simplified controller.

The question of how failing actuators influence the input set is addressed in the following
section. This will make it possible to sort out between the scenarios that are easier and
the ones that are harder to control. Finally, this will permit to give a complete statement
of the control problem.

3.1.3 Effects of Actuator Failures on Urem

The subsequent section analyzes how actuator failures affect the maneuverability of the
freeflyers. One of the problems that makes the control of systems under actuator failures
difficult is that the combinatorics of the possible failures lead to a large number of
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individual cases to be considered. While it might look at the first glance as if the value
of Ffault was a mere difference of parameters, the coming sections show that the system
behavior and consequently also the necessary control can differ greatly depending on which
actuators fail. Therefore, it is in a first step of high importance to reduce the numbers of
cases to the lowest amount possible.

For later reference, a fault scenario is defined as follows:

Definition 6 (Fault Scenario): Consider a freeflyer under the dynamics (3.2) and (3.3)
with eight inputs. Each of the actuators (1, 1), (1, 2), . . . (4, 2) can be in a failed (as of
Definition 5) or functioning state. A fault scenario describes the specific combination
of failed and functioning actuators at a given time.

Finding redundant fault scenarios In a first step of analysis, redundant problem
formulations can be found: Intuitively, it does not make a difference for the
maneuverability if either F1,1, F3,1, F2,2 or F4,2 are affected (see Figure 3.3 for clarity)
- simply by rotating the coordinate system in 90◦ steps, one case can be modeled by one
another. Additionally, if the other four thrusters are affected individually, then it is the
same pattern as before just with changed signs of the resulting forces and torque.

Conceptually, if any single actuator fails, all fault scenarios therefore have the same effect
on the fault induced on the system and the remaining degrees of freedom. These scenarios
are therefore redundant, in the sense of the following definition:

Definition 7 (Redundant Fault Scenarios): A set of fault scenarios is called redundant
if the set Uphys of remaining available inputs for each scenario can be transformed into
Uphys of the others purely by rotation and reflection.

The problem of finding redundant fault scenarios automatically and for any number of
errors is a geometrical one: The redundancies appear through a geometrically "similar"
(i.e. rotated and reflected) arrangement of the failed and functioning actuators. It can
thus also be solved through with geometrical methods, namely an approach that relies
on finding congruent polytopes. Two polytopes (or more general, subsets) are said to be
congruent if one is the image of the other via an isometry [66], i.e. the sets are rotationally
and reflectively invariant.

Proposition 1 (Redundancy of fault scenarios): When a freeflyer experiences multi-
ple actuator failures (as of Definition 5), redundant scenarios (ref. Definition 7)
may occur. These redundancies arise from the same relative positioning of the
failed actuators, where two scenarios differ only by rotation or reflection. To
identify such redundant scenarios, polygons can be defined whose corners lie at the
geometrical position of the failing actuators. If two polygons are congruent, then their
corresponding fault scenarios are similar and can be treated with the same control
approach.
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No. actuator failures No. of overall scenarios No. of unique scenarios

1 8 1
2 28 6
3 56 7
4 70 13
5 56 7
6 28 6
7 8 1

Table 3.1: Count of overall combinations of actuator failures per number of failures and
number of rotationally and reflectively unique cases.

Proof As the similarity is a purely geometrical feature based on the position of the
thrusters, any set of failing thrusters can be interpreted as a polytope in V-representation.
Therefore, algorithms for checking congruence find similar scenarios. As the difference
between similar scenarios is just one in reflection and orientation, a different reference
system can be introduced in which one similar scenario looks exactly as the other one.
This, however does not change the control task so the same method can be applied.

Methods for finding congruent polytopes are well-established and can for example be
found in [66]. With this approach, the number of cases that need to be considered can
be greatly reduced: The overall number of scenarios of n failures is 8!

n!(8−n)!
using the

combinatorics of the binomial distribution. Table 3.1 shows how many rotationally and
reflectively unique scenarios can be found: The number of overall scenarios from 0 to 8
faults is 256 while there are only 43 unique scenarios.

In the rest of the work, only unique failure scenarios will be regarded. Looking at these
individually allows to generalize the problems further into four fault classes. For them,
some properties of the input sets can be derived.

Different fault cases and their implications As from Eq. (3.3) follows, the map between
the thruster forces and the resulting forces and torque is linear. Also, the constraints
on the thruster forces are given as box constraints (see Eq. (3.5)). Due to linearity,
the resulting set Urem will be a polytope as well [67, p. 16 f.]. It can be calculated by
transforming the set into V-representation, transforming each vertex and then finding the
H-representation again.

As defined above, Uphys is the box-constrained set of physical inputs in R8. Additionally,
two more sets are defined: Urem is the remaining set of the manipulable inputs after one
or multiple failures occurred1.

Urem = DUphys (3.10)

1The non-manipulable, i.e. failed actuators form the faulty input force Ffault.
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The resulting set Ures represents the possible resulting thrust forces under control and
actuator failures.

Ures = Urem ⊕ Ffault. (3.11)

Note that from Uphys being closed, it follows directly that Urem and Ures are also closed.

Ures has a great analytical value as the acceleration of the system depends linearly on
this resulting force (ref. Eq. (3.2)). In other words, Ures determines the set of possible
accelerations and therefore the possible movements of the robot.

In the following, four different fault cases will be distinguished:

C1 Zero is contained in the interior of Ures.

C2 Zero is on the boundary of Ures.

C3 Zero is not contained in Ures and at least one vector
(
fx fy 0

)T is contained in the
interior of Ures where fx, fy are arbitrary.

C4 Neither zero nor an arbitrary vector
(
fx fy 0

)T are contained by Ures in its interior.

Remark 7: Without in-depth theoretical justification,
(
fx fy 0

)T ∈ Int(Ures)

implies that the orientation is still controllable even if the position is not.

In order to build intuition, an example for each of the cases is given and later a general
analysis is presented. Ures for the case without any faults is shown in Figure 3.5a and it
is clear that this is case C1. If thruster (1, 1) fails with an uncontrollable thrust of Fmax,
still C1 emerges as shown in Figure 3.5b. Case C2 can for example occur if thrusters
(1, 1) and (2, 1) get stuck at Fmax and case C3 emerges if additionally (1, 2) gets stuck at
zero, see Figures 3.5c and 3.5d. If thrusters (1, 1), (2, 2), (3, 1) and (4, 2) all get stuck at
Fmax, case C4 arises.

In the author’s view, these plots clarify what the definitions of the different fault cases
already contain: Case C1 is, as demonstrated, almost the same case as if the system
has no actuator failures. The system can accelerate into every direction and is hence
holonomic and small-time locally controllable. Conceptually, one could therefore think
of a controller that compensates for the faulty force and then applies the same strategy
as for the nominal, fault-free system with adjusted parameters. This case is thus not of
particular interest for this work.

Remark 8: In both cases, the system has full local controllability. Thus, the infinite-
horizon LQR controller can be used to ensure stabilization locally by deriving the
terminal cost and set from it.

In case C2, however, the system becomes nonholonomic: For the case given in Figure 3.5c,
the system cannot accelerate any more into the local negative x-direction. A compensation
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(a) No actuator failures: Case C1.
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(b) F1,1 = Fmax: Case C1.
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(c) F1,1 = F2,1 = Fmax: Case C2.
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(d) F1,1 = F2,1 = Fmax, F1,2 = 0: Case C3.

2.0 1.5 1.0 0.50.0 0.5 1.0 1.5 2.0Fx 2.01.51.00.50.00.51.01.52.0

Fy

0.0

0.2

0.4

0.6

0.8

1.0

T

(e) F1,1 = F2,2 = F3,1 = F4,2 = Fmax:
Case C4.

Figure 3.5: Examples for Ures if different actuators fail. Observe where the origin falls to
with respect to the interior of the polytopes.

of the uncontrollable input is therefore not possible any more and a new control design
needs to be found.

Remark 9: It should however be noted that according to the system equation
Eq. (3.2), the system can accelerate into the global negative x-direction: As the
input forces are multiplied with the nonlinear rotation matrix R, the orientation of
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the system - not the actuator faults themselves - determines in which direction it can
and cannot accelerate globally.

It may also be noted that the thrusters opposite to the failing ones can be chosen to
cancel out the failing ones. This would be equivalent to a system that is only propelled
by the thrusters in the y-direction. Analysis of the resulting system equations show
that this is almost the same description as a unicycle, to be more precise the same as
a unicycle on a ground without friction.

In contrast to case C2, C3 is also nonholonomic but in this case it is not possible any more
to have zero acceleration into the x-direction. This means that point stabilization is not
only from a practical, but even from a theoretical point infeasible as no compensation can
be found s.t. f(x = 0, u = const.) = 0. As also observed in Remark 9, the acceleration
in the global coordinate system however also depends on the orientation, expressed in
Eq. (3.2) through R. And additionally, the orientation can still be controlled: The
subsystem (

α̇

ω̇

)
=

(
0 1

0 0

)(
α

ω

)
+

(
0
1
J

)
T (3.12)

is just a double integrator with input T . This is why there is a distinction is to be made
between cases C3 and C4: In C3, the orientation can still be used to "steer" the system
into a certain direction while in C4, this is not possible any more.

Remark 10: One interpretation of these results is the following: The actual underlying
difficulty of the problem is not, that the system is disturbed by a constant force. The
problem is instead that the magnitude of the disturbing force lies within the range of
the other actuators - with the implication that while it is possible to cancel it out, no
control authority is left in that case.

Remark 11: This also means that this work cannot apply common strategies for
robust control as the bare mitigation the influence of the error is not possible.
Conceptually, it is therefore expedient to think of all the different error scenarios
as a class of systems with common characteristics and different manifestations. The
task is to find a control scheme that can control all systems in this class.

Relationship between actuator failures and fault cases The implications of the different
fault cases have been investigated in the previous paragraph by means of examples. The
interpretation for each case stands however in general. It is furthermore of interest to find
when each case can appear based on the number of actuator failures. Some conditions
can be given in the following lemma:

Lemma 1: The relationship of the number of failing actuators (as of Definition 5) and
the possible occurrence of fault cases C1-C4 for the freeflyers is as follows:

• If there is no or one actuator failing, C1 appears always.
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No. actuator faults C1 C2 C3 C4
1 always - - -
2 ✓ faults at 0 or max - -
3 ✓ ✓ ✓ -
4 ✓ ✓ ✓ faults at 0 or max

5+ ✓ ✓ ✓ ✓

Table 3.2: Overview of the fault cases that can occur for different numbers of actuator
failures. ✓ means that the fault can occur for certain combinations of faults, hyphen
means that it can never. The textual statements are necessary but not always sufficient
conditions that the case emerges.

• If there are two actuators failing, C1 or C2 appear always.
• If there are three actuators failing, cases C1-C3 can appear.
• Only if there are four or more actuators failing, all cases including C4 can

appear.

A slightly more detailed overview is displayed in Table 3.1.

Proof sketch For the sake of brevity, the proof is not written down explicitly. It follows
directly from two properties: First of all, the absolute value of D for each row is the same
(if not zero), only the sign can be changed. Furthermore, the possible thrust for each
thruster is in [0, Fmax]. Consider only the first row of D: The set of possible values for
the resulting force in x-direction is then given as

U1,1 ⊕ (−U1,2)⊕ U2,1 ⊕ (−U2,2)⊕ Ffault[1] (3.13)

with the definition of Ui,j from Eq. (3.5) and Ffault[1] being the first element of Ffault.

Playing through the different (unique) scenarios of broken thrusters leads to the resulting
set containing zero inside, on the boundary or not containing it. Finally using the
equivalent argument for the other rows yields the result of Lemma 1.

3.2 Problem Statement

The preceding results from this chapter give the means for the full problem statement:
In Section 3.1, a mathematical model of the freeflyers is provided. The actuator bounds
are derived in Section 3.1.3, where also the four fault cases are defined that need to be
considered. Further analysis shows that case C1 is easy to handle with a slight adaption
of the control for the nominal case. Cases C2 and C3 are shown to be not controllable
with the existing method due to the nonholonomicity and partial loss of controllability.
Also case C4 is shown to be not controllable with the existing method, but also to be less
promising to be possibly controllable at all.

Based on this, the problem statement follows:
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Definition 8 (Problem statement): Consider a freeflyer with the dynamics (3.2) under
actuator failures. Assume one or multiple actuator failures as of Definition 5 are
present and the fault scenario (ref. Definition 6) is of the fault cases C2 and C3.

Let the freeflyer be subject to the feasible state constraints x ∈ X for all x(t), t ≥ 0

resp. xk, k ∈ N+
0 . Additionally, let the input constraints under actuator failures be

u ∈ Urem for all u(t), t ≥ 0 resp. uk, k ∈ N+
0 with Urem as given in Eq. (3.11).

Assume a trajectory χ is continuously resp. discretely dynamically feasible as of
Definition 2. Assume further that it satisfies the state constraint X within an
neighborhood N = {x ∈ Rnx|∥x − χ∥ ≤ ρ} ⊆ X for all t/k in the trajectory’s
time domain where ρ > 0 is constant.

The control problem consists of bringing the freeflyer to N and keeping it inside of
it while satisfying the constraints, i.e. the tracking error e converges to e ≤ ρ under
satisfaction of x ∈ X and u ∈ Urem.

According to Lemma 1, this means that if the problem is solved, the freeflyers can be
guaranteed to be partially controlled for at least three actuator failures. As C1- C3 also
appear for some of the scenarios with four or more actuator failures, this is however not
exhaustive and there are more recoverable combinations.

Remark 12: It is in most cases not desirable to continue operating the system even
under actuator failures. A controller satisfying the given definition is however capable
of avoiding crashes on a short horizon and to autonomously move to a place where
necessary repairs can be undertaken and help is available.

3.3 System Analysis

In the previous section, the problem statement has been given. The purpose of the
concluding part of the chapter is to provide some more analysis in preparation of the later
proposed controllers. Different potential control strategies are discussed and assessed
regarding their performance as well as practicability.

The first direct implication that follows from the nonholonomicity is that nonholonomic
systems can never be stabilized by a linear feedback law [68]. Linearization of the system
and using a local control law is thus impossible. Additionally, Brockett’s Theorem states
that nonholonomic systems cannot even be point-stabilized using smooth (nonlinear) time-
invariant feedback [45]. Hence, classical feedback-linearization is also not possible in this
case.

Brockett’s Theorem, however, leaves some other possibilities for stabilization [69]: Non-
smooth and time-varying feedback. Leaving general time-varying feedback out of the
scope for now, another well-established method would be Sliding Mode Control which
gives a non-smooth control law. Still, this control scheme requires 0 ∈ Int(Ures), see [70,
p. 563f.] where 0 ∈ U for an open set U is needed. As of the definition of C2, this is not
fulfilled with the current set of actuators.
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Sliding Mode Control has indeed been applied to nonholonomic systems. In order to make
this work, the aforementioned condition is necessary to be satisfied which is possible only
if certain actuators are taken out of the control. This means that as in the control schemes
discussed in the introduction, not only a broken thruster has to be taken out of control, but
also its counterpart on the other side. Thus, the controller suffers from conservativeness,
as not the whole input can be used.

Additionally, further results even indicate that the system can become small-time locally
uncontrollable for certain combinations of failures [30]. In this case it is not possible to
use Sliding Mode Control any more as the assumption that the system is controllable in
the region of the Sliding Mode (which contains zero) is violated.

Accordingly, a different non-standard, nonlinear and possibly time-varying feedback law
would need to be found. In fact, the requirements are even tighter: It has already been
observed that case C2 means that nonholonomic constraints appear. So far, the actual
form of the constraints has however not been regarded yet. And as you can see from
Figure 3.6, the constraints can be quite different for different cases: Figure 3.6a only has
nonholonomic constraints on Fy, while the nonholonomic constraint in Figure 3.6b holds
for a plane that contains the origin and involves Fx, Fy and T . For Figure 3.6c, there are
even three planes meeting at the origin and therefore posing nonholonomic constraints.
The statement from the beginning of this paragraph therefore needs to be corrected: In
fact, multiple non-standard, nonlinear and possibly time-varying feedback laws would
need to be found.

(a) F3,1 = Fmax, F3,1 = Fmax (b) F3,2 = Fmax, F1,1 = 0 (c) F3,2 = Fmax, F3,1 = 0

Figure 3.6: Ures for different combinations of 2 failing actuators of class C2.

While it might be possible to find different controllers so that every case that can occur is
satisfied, this would turn out to be a very complicated and cumbersome work: A search
on Google Scholar for "unicycle control" gives around 22 900 results that date back from
the 1980s until today. Only for this single and also very simple nonholonomic system,
massive research efforts have been made. While the problem can be seen as solved today,
this shows how difficult it can be to derive a working nonholonomic controller even for
one single system, let alone multiple ones.

The significant challenges that come with controlling the system in a failure case of C2
become apparent by this analysis. This becomes even more evident if systems of C3 are
supposed to be controlled: As aforementioned, 0 ∈ Ures is required so that the desirable
steady states and linear trajectories are feasible. By definition, this requirement is not
satisfied and trade-offs are necessary to guarantee at least some level of control.
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This is the reason why the problem is approached from a slightly different angle in
this work: Instead of controlling all system states, the attitude is disregarded and it
is considered sufficient if the position can be kept in a certain region around the zero
error. It turns out that in this case a new system formulation can be found which does
not suffer from the discussed problems, and both C2 and C3 can be treated.

The proposed solution is called micro-orbiting and has to the best of the author’s
knowledge not been proposed earlier. It is based on bringing the system into a small-scale
orbit around a defined point, and using the orbit dynamics to cancel out the partially
compensated error.

Remark 13: The question might come to mind why an explicit controller is needed
at all: MPC can, ultimately, take any constraints into account and find the optimal
solution. The problem is that, as described in Section 2.3, the control horizon is
limited and in order to provide stability, a terminal condition is necessary that allows
to conclude that. Requiring the error to be zero at the end of the horizon would
theoretically suffice, but poses a practical problem regarding the feasibility if the
horizon is too small. Otherwise, the knowledge of a valid terminal condition is
equivalent to the knowledge of local stability or a locally stabilizing control law.
Therefore, even if the actual used controller is of MPC type, a terminal controller is
sought that ensures stability for all time steps beyond the prediction horizon.
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Chapter 4

Gaining Holonomicity through Micro-
Orbiting

The previous chapter demonstrated the challenges in controlling the system as initially
formulated. This chapter proposes a strategy to circumvent these issues by modifying the
control objective. Despite this modification, the problem statement outlined in Definition
8 remains satisfied. While the strategy does not yet incorporate specific controllers (which
will be presented in Chapter 5), it yields a controllable model, thus bridging the gap
between modeling and control.

The basic idea is to bring the system into a small-scale orbit, called micro-orbit, around a
defined point. By exploiting the orbit dynamics, the uncontrollable error can be partially
compensated and a holonomic system can be derived.

4.1 Planar Circular Movements

To introduce the concept of micro-orbiting, the kinematics of a body in planar movement
are presented. This serves to show which accelerations appear when a body rotates around
a center and which forces are necessary to maintain the motion.

The following equations are adapted from [71] and a drawing of the system is shown in
Figure 4.1: Introduce two points A and B with positions vA and vB. Let B be the center
of a rigid body and A, not lying on the body, have a constant distance r to B. Introduce
the local time-dependent coordinate system with unit vectors er and eφ such that the
connection vector between A and B becomes rer. Let ω be the angular velocity of the
rigid body and m its mass. Then it holds

vB = vA + rer

v̇B = v̇A + ωreφ

v̈B = v̈A + ω̇reφ − ω2rer.

(4.1)
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A

B
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vB

r

ereφ

x

y

Figure 4.1: Drawing of a rigid body in planar circular motion as described in Eq. (4.1).

This is so far only a kinematic description of a motion, the motion will however not arise
by itself. In order to realize it for a physical object, an external force needs to be present
to keep B on the orbit around A.

Restrict the consideration now to a rotation of B around A with constant angular velocity
ω0: In this case, it is clear by Newton’s law that the necessary force to keep the body on
the orbit around A is −mω2

0rer. This is a constant force that always directs towards A,
i.e. the center of the circular path that B is following.

Remark 14: Be careful to not confuse kinematics and dynamics here: The kinematics
presented in Eq. (4.1) show that the accelerations ω̇reφ and −ω2rer need to be
present so that the described motion is possible. If there is no physical constraint
(i.e. A is on the body), these accelerations would not occur without influence from
the outside - according to Newton’s law, the body would keep its inertia and follow a
straight motion into the current direction. The accelerations must instead be applied
externally by the forces acting on the body.

Eq. (4.1) only considers the position, not the orientation of the body: The rotational
inertia will - once again following Newton’s law - stay constant without external torques
applied. This means the following: Consider both the angular velocity of the body around
itself and the angular velocity of the body around the center A are ω0. Then, orientation
of the body towards A will not change as long as the two motions are sustained. This
happens as the two changes in relative orientation cancel each other out.

The implication is that if (1) both angular velocities are the same and constant at some
point, (2) no external torques are applied and (3) the necessary force −mω2

0rer acts on
the body, then this force will be constant in the local coordinate system of the body.
Also, the body will stay on the circular trajectory. In other words, the body experiences
a constant force relative to its own coordinate system, but maintains the rotation around
A.

The observation can be extended to orbits around a moving center A: As of Eq. (4.1), the
inertial accelerations and the accelerations of the center can be summed up. Accordingly,
the body only needs to additionally experience the same forces and accelerations as if it
was directly moving along the trajectory. To describe the resulting movement in intuitive
words, the path of the body then becomes a spiral around a trajectory.
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To conclude, there is only one locally constant force and zero torque necessary to keep a
rigid body on a suitable orbit once it has entered it. If the body should orbit around a
point moving along a trajectory, simply another force should be added which realizes the
accelerations of the trajectory without the orbit.

Remark 15: The dynamics, for the case of a static center, are exactly the same as
the ones for satellites on a big scale: In their case, the force acting on them is gravity
while the radius is determined by their altitude. It is as well similar to what happens
to the body of a passenger on a swing carousel.

4.2 Micro-Orbiting

As described in Section 3.3, the constant faulty force makes it impossible to keep a robot
with fault case C3 at a defined setpoint. In the light of the foregoing section, something
else is however possible: As the uncontrollable faulty force is constant, it can keep the
system on a suitable orbit around the setpoint. This is the main idea of micro-orbiting.
Additionally, with a partial compensation of the uncontrollable faulty force, the problem
of nonholonomicity can be circumvented that appears for both C2 and C3. These thoughts
will be extended in the coming section.

The thought that the uncontrollable force can keep the system on an orbit around a point
is rather straightforward. As it is constant and the orientation and angular velocity can
still be controlled in cases C2 and C3, a suitable orbit can be found and maintained. But
while this enables the system even for C3 to stay in a certain region - namely a circle with
radius r - around a setpoint, nonholonomicity can still occur:

Consider for example the case shown in Figure 4.21 where F1,1 = F2,1 = Fmax and F1,2 = 0.
In this case, Ffault =

(
2Fmax 0 0

)T and Fx ∈ [Fmax, 2Fmax] for all Fx ∈ Ures. If a
suitable micro-orbit is found so that Ffault is completely compensated by the rotational
accelerations, Urem can be calculated according to Eq. (3.11). This means that Fx ∈
[−Fmax, 0] for all Fx ∈ Urem, i.e. the controllable inputs are still nonholonomic.

Fx

T

−Fmax Fmax 2Fmax

Ffault

Urem = U Ures

(a) Orbiting with Ffault

Fx

T

Ffault

Fvirt Fcomp

−Fmax Fmax 2Fmax

U
UresUrem

(b) Orbiting with Fvirt

Figure 4.2: Relationship between the different input sets and vectors for F1,1 = F2,1 =
Fmax and F1,2 = 0. Displayed are projections on the Fx-T -plane.

1an extension of the example in Section 3.1.3, see Figure 3.5d
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It turns out that this can be solved easily by introducing a partial compensation of the
uncontrollable input. In terms of the example, consider what would happen if the amount
of force directed to orbiting would not be

(
2Fmax 0 0

)T , but
(
1.5Fmax 0 0

)T : Then,
in an adaption to Eq. (3.11), Fx ∈ [−0.5Fmax, 0.5Fmax] for Fx in the resulting input set U .
To realize this, Ffault simply needs to be compensated by 0.5Fmax.

Remark 16: Keep in mind that additions in Ures or Urem do not directly correspond
to changes in actuator thrusts of one distinct actuator. Instead, if a resulting force
is within these sets, there is at least one way (but maybe multiple) of realizing this
resulting force.

In terms of the example, it would not suffice to only compensate using thruster (2, 2)
- in that case, the robot would experience an unwanted torque. Consequently, the
remaining actuators must counteract this torque, making the physical realization of
the compensation less apparent. This underlines the advantages of using a control
allocator as mentioned before and described in Appendix A.

This thought can be generalized and systematized:

Definition 9 (Virtual faults): Consider a freeflyer under actuator failures (as of
Definition 5): The virtual fault Fvirt ∈ Ures is the remaining uncontrollable thrust
after a partial compensation Fcomp ∈ Urem of the actual (uncontrollable) faulty thrust,
i.e.

Fvirt = Ffault − Fcomp. (4.2)

The remaining set of available inputs is then

U = Ures ⊖ Fvirt. (4.3)

Proposition 2 (Micro-orbiting for fault-mitigation): Consider a freeflyer under actu-
ator failures causing case C2 or C3 and a compensation force Fcomp such that the
virtual fault Fvirt ∈ Int(Ures). Then, the input constraints of the system can be made
holonomic by redefining the control objective: Instead of controlling the position of
the freeflyer itself, it is brought into a small-scale orbit, called micro-orbit, around
a setpoint or trajectory. By these means, the system can be kept within a region
around the desired point even though the point itself may not be recursively feasible.

Proof Start by showing that the virtual fault exists and the sets have the desired
properties: As Ures is the set of resulting overall forces which includes both the controllable
control input as well as the uncontrollable fault input Ffault, the resulting force needs to be
within Ures. By Definition 9 and Eq. (3.11), Fvirt is hence always feasible and within the
bounds of the definition freely selectable. If Fcomp is moreover chosen s.t. Fvirt ∈ Int(Ures),
then 0 ∈ Int(U) by Definition 9.
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Assume the system is operated on an orbit that can be kept up by Fvirt. Then, as seen
from Eq. (4.1), the accelerations and Fvirt cancel out. The remaining controllable input
therefore lies by Eq. (4.3) within U .

It is important to note that Definition 8 only requires the system to stay within a region
around a point, i.e. the error does not need to be zero. If the system stays on the orbit,
the error is therefore constant and equal to r and the control objective is fulfilled.

Potentially, if only staying in a region around the setpoint is required, any feasible
closed trajectory could be used - from tracking "8"-shaped paths over squares with
rounded corners to completely free (feasible) forms. A circle is just the easiest-to-describe
trajectory as it is not time-dependent. Moreover, the faulty force is constant so the circle
is viable without additional control effort and energy. And as a third advantage, micro-
orbiting allows to avoid the nonholonomicity, therefore solving two problems at once.

4.3 Practical Considerations

The current section has shown that there are combinations of forces and orbit parameters
that keep the robot on the orbit. So far this has been restrained to "suitable" or "feasible"
orbits and not been specified further. Also it has not been discussed according to which
criteria Fvirt should be selected.

To start with, the latter question can be answered: As explained in the foregoing section,
the introduction of the virtual faults was reasoned by its ability to bring 0 into the interior
of U . This increases the control authority because, as explained, the orbiting dynamics
and the virtual fault cancel out and only U remains.

U is therefore the control that can be used for trajectory following. As such, it imposes
also a feasibility constraint: Only trajectories that can be realized with the inputs in U
are feasible.

Consequently, it is desirable to increase the control authority as much as possible. To put
it into more concrete terms, Fvirt should have the maximal distance to the boundary of
Ures

2 which would put it as a first guess at the Chebychev center of Ures.

Additionally, however, it was pointed out that no external torque should act on the system
in order to maintain the orbit as described. Therefore, the third value of Fvirt needs to
be fixed to 0 and only the other two values can be optimized. Finding Fvirt becomes thus
a convex optimization problem of the form

maximize
Fvirt, ξ

ξ

subject to Fvirt + ξu ∈ Ures,∀∥u∥ ≤ 1,

Fvirt[3] = 0

(4.4)

which is the problem of finding the largest ball contained in the polytope Ures. The
solution can be easily found using numerical solvers, for reference see also [42, p. 417 f.].

2Wherefore 0 has the maximal distance to the boundary of U by Eq. (4.3)
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Remark 17: One interpretation of the orbiting with the virtual fault would be
as a method to compensate a "desired amount of fault" such that a maximal
maneuverability is achieved.

For the orbit parameters, Section 4.1 implicitly already contains the answer: In the
discussion, it has been shown that

Fvirt
!
= −mω2

0rer (4.5)

respectively

∥Fvirt∥
!
= mω2

0r. (4.6)

This leaves two degrees of freedom: One of them is already fixed by the choice of Fvirt.
Accordingly, ω0 can be selected fixing r or the other way around.

The parameters ω0 and r can be treated as tuning variables. Selecting these parameters
involves a trade-off: A smaller orbital radius better satisfies the original control objective,
but reducing the radius necessitates an increase in ω0. Regular trajectories typically
exhibit relatively low values of ω0 wherefore increasing it means that the system starts
increasingly distant from the desired setpoint. This can lead to a transient response that
violates state constraints or the possible infeasibility of the problem.

4.4 Orbit Center Dynamics

Until now, the micro-orbiting was described by the position of the freeflyer that executes
two motions in superposition, namely the movement along the trajectory and the orbit.
Even though this is a good perspective for describing the idea, it turns out that a different
model is more useful for the mathematical treatment: Instead of the position of the robot,
the position of the orbit center can be described. In this case, the center means where
the center should be with reference to the robot, not with reference to the trajectory.

Without loss of generality, the local coordinate system can be chosen at the center of
mass of the robot such that the virtual fault is aligned with the positive local y-axis.
The position of the desired center follows accordingly as rey′ . In this formulation, the
inputs Fx and Fy are not necessarily aligned with the axes any more, but this can simply
be solved by a change of variables through a rotation of the input. The rotation of all
necessary input sets follows accordingly.

It is important to note that this change of variables introduces a distinction between the
equations presented up to this point and those that follow. While the symbols remain
the same, they now carry new definitions. The rest of this work will use the notation
introduced here. A schematic of the model is shown in Figure 4.3.
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Figure 4.3: Schematic of the center point dynamics under micro-orbiting.

The dynamics of the robot can then be given as

f(x) =



ẋ1

ẏ1
α̇

ẋ2

ẏ2
ω̇

 =



x2

y2
ω

R

(
Fx

Fy + ∥Fvirt∥

)
1
m

T 1
J

 (4.7)

where

R =

(
cosα − sinα

sinα cosα

)
. (4.8)

The dynamics of the center can be derived by forward-calculation using the relationship(
c1
c2

)
=

(
x1 − cos(π

2
− α)r

y1 + sin(π
2
− α)r

)
=

(
x1 − r sin(α)

y1 + r cos(α)

)
(4.9)

with its derivatives(
ċ1
ċ2

)
=

(
ẋ1 − r[cos(α)ω]

ẏ1 − r[sin(α)ω]

)
=

(
x2 − ωr cosα

y2 − ωr sinα

)
=:

(
c3
c4

)
(4.10)

and (
c̈1
c̈2

)
=

(
ċ3
ċ4

)
=

(
ẋ2 − ω̇r cosα + ω2r sinα

ẏ2 − ω̇r sinα− ω2r cosα

)
= R

(
Fx

Fy + ∥Fvirt∥

)
1

m
+

(
−T

J
r cosα + ω2r sinα

−T
J
r sinα− ω2r cosα

)
.

(4.11)

The equations

α̇ = ω (4.12)

ω̇ =
T

J
(4.13)
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still hold. Due to the definition of R in Eq. (4.8), this can be rewritten as(
ċ3
ċ4

)
= R

(
Fx

Fy + ∥Fvirt∥

)
1

m
+

(
cosα − sinα

sinα cosα

)(
−T r

J

0

)
+

(
cosα − sinα

sinα cosα

)(
0

−ω2r

)
(4.14a)

=

(
cosα − sinα

sinα cosα

)( Fx

m
− T r

J
Fy+∥Fvirt∥

m
− ω2r

)
= R

((Fx

m
− T r

J
Fy

m

)
+

(
0

∥Fvirt∥
m

− ω2r

))
(4.14b)

= R

((Fx

m
− T r

J
Fy

m

)
+

(
0

(ω2
0 − ω2)r

))
(4.14c)

with a proper selection of ∥Fvirt∥, r and ω0 according to Eq. (4.6). Introduce a new input
using the clearly invertible linear mapŭ1

ŭ2

ŭ3

 =

 1
m

0 − r
J

0 1
m

0

0 0 1
J


︸ ︷︷ ︸

=:M

Fx

Fy

T


︸ ︷︷ ︸

=F

(4.15)

and the "de-turned" input with an as well invertible mapu1

u2

u3


︸ ︷︷ ︸

=:u

=

cosα − sinα 0

sinα cosα 0

0 0 1


︸ ︷︷ ︸

=R

ŭ1

ŭ2

ŭ3

. (4.16)

Then, after rearranging the rows, the new system is

ċ1
ċ2
ċ3
ċ4
ω̇

α̇

 =



c3
c4(

− sinα

cosα

)
(ω2

0 − ω2)r +

(
u1

u2

)
u3

ω

 =



c3
c4

− sinα(ω2
0 − ω2)r

cosα(ω2
0 − ω2)r

0

ω

+



0

0

u1

u2

u3

0

 (4.17)

where, as follows from above,

u = RMF (4.18)
F = M−1R−1u. (4.19)

The error dynamics of the system, with a trajectory given as

χ(t) =
(
χ1(t) χ2(t) (·)

)T (4.20)
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follow from e = x− χ:

ė =
d

dt



c1 − χ1

c2 − χ2

c3 − χ̇1

c4 − χ̇2

ω − ω0

α

 =



ė1
ė2
ė3
ė4
ė5
α̇



=



e3
e4

− sinα(ω2
0 − (ω0 + e5)

2)r − χ̈1

cosα(ω2
0 − (ω0 + e5)

2)r − χ̈2

0

ω

+



0

0

u1

u2

u3

0

 (4.21)

=



e3
e4

sinαf(e5)− χ̈1

− cosαf(e5)− χ̈2

0

ω

+



0

0

u1

u2

u3

0


In the last step, the new definition

f(e5) = (2ω0 + e5)e5r (4.22)

was used.

The obvious advantage of this formulation is that the trajectory itself does not need to
be modified: Once an error has occurred, only the controller itself needs to be modified
and not both controller and trajectory. Additionally, the formulation is rather compact.

The new state
(
c1 c2

)T is called the center point in this work, even though this could be
seen as slightly imprecise as explained in the following important remark:

Remark 18: A motion that actually resembles an orbit can only be observed if the
error is small compared to the radius. Only once it is zero, the robot will actually
orbit around the trajectory with the given r and ω0. A more precise name for the
point

(
c1 c2

)T would therefore be the desired center point. What this means in
practice can be seen in Chapter 6.

Concerning the control of the systems, two more things can be noticed:

Remark 19: Notice that the input transformation Eq. (4.19) implicitly depends on
the state due to R. Due to the invertibility of the transformation, a control law can
be found that uses u. For deriving sets of valid control laws, either a transformation
of the input set for F into an input set for u is necessary, or the inverse transformation
needs to be taken into account.
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Remark 20: The system is orbiting around the point on the trajectory that it would
track in a non-faulty case. The orientation, in turn, is also defined for the nominal
trajectory but dropped when the orbiting starts. Therefore, the third element in
Eq. (4.20) is not given explicitly. It is also never taken into account when calculating
the error towards the trajectory.

4.5 Concluding Remarks

This chapter presented micro-orbiting, a strategy where a freeflyer under actuator failures
is brought into a controlled orbit around a fixed or moving point. One of the main features
of the proposed solution is that it makes very few assumptions on the type of actuator
fault. It further solves the problem in a very general fashion without the need of treating
a lot of edge cases which would appear if the position of the system itself was controlled
instead.

One of the drawbacks of the method is certainly that the orientation of the controller is not
controlled any more. In a normal case, this would be unacceptable as the system cannot
serve its original purpose any more. When it comes to control under actuator failures,
contrarily, the main concern is to maintain safety and to avoid crashes and further damage.
This is ensured as micro-orbiting still allows the system to autonomously return to a place
where help is available and the actuators can be repaired.

The concluding part of the chapter consists of a couple of observations and remarks that
are not directly connected to each other. They provide further insight into the method,
but are not necessary for the rest of the work.

Different Motivations for Micro-Orbiting Micro-orbiting was, in this work’s line of
thought, mainly motivated by the need to resolve the nonholonomicity that appears for
both C2 and C3. The philosophy behind it what thus that instead of resolving all different
cases of nonholonomicity, a new problem is formulated that does not suffer from this any
more.

If only C3 is considered, however, another interpretation is possible: As the trajectory
might not be feasibly any more, orbiting may be seen as a general description of a new
path that is both feasible for all possible fault scenarios and does not diverge from the
original path too much.

Reasons for the feasibility of the approach While it was explained how the orbiting is
done, no thought has been put onto why it is possible so far. It is clear from Eq. (4.21)
that the most important part is to keep f(e5) and therefore e5 (the error in ω) as close
to zero as possible: Only then, the nonlinear term will vanish (which, in physical terms,
happens by the cancellation of the virtual fault and the inertial forces).

Thus, it is of crucial importance to have control authority over the angular velocity, which
is in turn controlled by the torque T = Ju3. This is always guaranteed with C2 and C3
by definition.
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It has been shown that for up to three failing actuators, only the cases C1- C3 occur. But
to understand the reasons for the feasibility of micro-orbiting on a fundamental level, it
needs to be understood why only these cases appear:

The approach functions as the actuators of the system are placed off-centered, so each of
them contributes to the overall torque. Hence, the torque remains controllable for a lot
of combinations of actuator failures. To put it into other words, one could say that there
is more redundancy for controlling the rotation than for straight movements.

Comparison to Fault-Tolerant Control for Quadrotors The already earlier cited works
[24, 27] propose ways to control quadrotors under actuator failures. They also let go of
the control of some states, particularly the yaw rate. The difference to this approach is
that they do not use this actively: According to [72], the control of the yaw direction
becomes infeasible under the considered actuator failures, wherefore they simply exclude
it from the control scheme. It may also be noted, anticipating the next chapter, that [27]
does give any guarantees for the proposed MPC.

Comparison to ε-tracking Micro-orbiting has a curious similarity to a work on the control
of surface vessels, see [73, 74]. There, a feedback-controller is presented that globally
stabilizes a surface vessel up to an arbitrary small error. This is achieved by not controlling
the position of the surface vessel, but a point arbitrarily close to its position that lies either
right or left of the vessel. By not considering the actual position and instead a point next
to it, (in combination with some state transforms) the nonholonomicity is avoided there,
similar to the center dynamics in this work.

The perspective from where the result was found was however a very different one: Both
cited works do not consider actuator constraints. The nonholonomic constraints that they
take into account stem from the system equations, even though they are similar in the way
that they constrain "sideways" movement. This is the reason why their controller cannot
be readily applied in the present work for all scenarios. It may be noted, nonetheless,
that the "sliding unicycle" from Remark 9 can indeed be stabilized using it.

Generalization to 3D movements As a concluding remark to this section, statements
similar to the 2D-orbiting are possible for 3D-rotations. A transfer of the presented
control approach to 3D-systems is currently underway. It may be noted that it is not as
straightforward as it may seem as Euler’s rotation equations suggest a coupled nonlinear
system of differential equations. On the other hand, the micro-orbit around the trajectory
can be chosen to be any orbit on a sphere, so there are more degrees of freedom that can
be exploited.
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Chapter 5

Control Through Micro-Orbiting

In the previous chapter, micro-orbiting was presented as a strategy that allows the
freeflyers to operate even under actuator failures. By keeping the virtual uncontrollable
force directed at the center of a micro-orbit and orbiting at the angular speed ω0, the
orbit dynamics and the virtual fault cancel out. It then becomes possible to control the
resulting system. In the following chapter, it is shown how to do that using three different
controllers.

The first controller in Section 5.1 is a feedback controller based on feedback linearization.
It is capable of controlling the robot with a low computational effort, but not able to
avoid unsafe sets of states. The controller can only stabilize a setpoint and not follow
a trajectory, but on the other hand it is shown that parameters exist that make the
stabilization global. The second and the third controller are MPC controllers and therefore
may satisfy additional constraints concerning their region of stability. They also allow for
tracking.

Both MPC controllers rely on a terminal controller for which terminal costs and terminal
sets are derived. The difference lies in the terminal controllers used: For the second
controller in Section 5.2, the system is feedback linearized and locally controlled with
linear feedback which leads to a small terminal set. The third controller in Section 5.3,
in contrast, uses a terminal controller based on feedback linearization techniques together
with explicit MPC. This has, as to the best knowledge of the author, not been proposed
yet and leads to a much larger terminal set.

5.1 Feedback-linearizing Control

Feedback-linearization is a powerful technique and one of the most universally applicable
approaches for the control of nonlinear systems. It represents the basis for the first
controller that is shown in this chapter. Interested readers can get a good overview over
the possibilities and drawbacks in [70, Chap. 5].
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The feedback linearizing controller inverts the nonlinear dynamics in Eq. (4.21) which
gives the linearized error dynamics of the orbit center

ė =



e3
e4
0

0

0

ω

+



0

0

u1

u2

u3

0

 (5.1)

and the control law

u =

− sinαf(e5) + χ̈1

cosαf(e5) + χ̈2

0

−Ke. (5.2)

Choose K as

K =

k1 0 k2 0 0

0 k1 0 k2 0

0 0 0 0 k3

 (5.3)

where the parameters k1, k2 and k3 > 0 are yet unspecified. Define a saturation function
as follows:

Definition 10 (Saturation through truncation): Take a control input u /∈ U and
introduce U as a convex input set satisfying 0 ∈ Int(U). The saturated control
input utrunc ∈ U is determined as the intersection between the vector u and ∂U .

Remark 21: Note that the saturation is not achieved by projection on ∂U but rather
by truncating at the intersection of u with ∂U (see Figure 5.1). The truncation
preserves the signs of each variable of u which the projection does not do necessarily.
The first statement is clear as the truncation can be written as utrunc = γu with a
suitable γ ∈ (0, 1]. The statement for the projection can be easily shown through
contradiction with a counterexample.

U

x

y

u

utrunc uproj

Figure 5.1: Different saturation strategies via truncation or projection.

The following theorem establishes stability for the controller:
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Theorem 4: Consider the system with the dynamics given in Eq. (4.21) and input
constraints MRu ∈ U , with U from Definition 9 where 0 ∈ Int(U). Let the controller
be given by Eq. (5.2) with an additional saturation function as in Definition 10.

Then, for all starting states x0 ∈ Rnx , suitable parameters k1, k2 and k3 can be found
that globally asymptotically stabilize errors e1 to e5 at zero.

The sixth state α is not stabilized, but this a direct consequence of micro-orbiting with a
constant angular velocity.

Proof First consider the system without input constraints: In this case, solve the
Lyapunov equation by direct calculation, where CTC = I5×5, and get for the closed-
loop system the solution

P =


k21+k22+k1

2k1k2
0 1

2k1
0 0

0
k21+k22+k1

2k1k2
0 1

2k1
0

1
2k1

0 k1+1
2k1k2

0 0

0 1
2k1

0 k1+1
2k1k2

0

0 0 0 0 1
2k3

 (5.4)

This matrix is always positive definite for any k1, k2, k3 > 0 and the pair (C,A) with
C = I5×5 and

A =


0 0 1 0 0

0 0 0 1 0

−k1 0 −k2 0 0

0 −k1 0 −k2 0

0 0 0 0 −k3

 (5.5)

is trivially observable. Note that the sixth state α has been left out in this statement as
it is not a controlled variable. Therefore (ref. [43, Thm. 8.2]), the system without state
α is stable.

Before the input-constrained case is treated explicitly, observe that the transformation
MRu allows to derive an expression for u that is independent of α

u ∈ Uu :=
⋂

α∈[0,2π)

MRU (5.6)

where, for every fixed α, the transformation MRU is applied for every point in U . The set
is the intersection of MR(α)U for every α, i.e. the intersection of all possible combinations
of rotation and linear transformation of U . Intuitively speaking, it will result in a body
of revolution with rotation around the u3- resp. T -axis. Notice that this set, equally to
U , contains zero in its interior, i.e. 0 ∈ Int(Uu). This follows directly as, with a fixed α,
both transformations are linear maps.

In order to extend the stability result for the input-constrained case, first notice that
u3 =

T
J

and ė5 = u3. Conditions for the stability of the e5-subsystem can be derived using
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the Lyapunov function

V (e5) =
1

2
e25 (5.7)

⇒ V̇ (e5) = e5u3

!
< 0 ∀e5 ̸= 0. (5.8)

The last requirement can easily be satisfied by sgn(u3) ̸= sgn(e5). This is always satisfied
due to u3 = −k3e5 following from the control law and as the saturation preserves the sign
of the input. Accordingly, it follows stability in terms of Lyapunov for e5 even under the
input constraints.

In general, it is not always ensured that the nonlinear compensation is possible under
satisfaction of u ∈ Uu. However, as of Eq. (4.22), e5 → 0 ⇒ f(e5) → 0 for t → ∞
and therefore the compensation will always be possible for a finite t ≥ t̃ with a suitable
bounded t̃ ≥ t0.

From this follow two things: First, the e5-subsystem is globally stable and second, the
e1-e4-subsystem always becomes feedback linearizable. Additionally, the parameters for
K can be chosen freely and will always stabilize the system.

Now introduce a Lyapunov function V (e) = eTPe with P from Eq. (5.4). Choose the
parameters such that the control output satisfies the constraints for ∂Ẽ with

Ẽ = {e|V (e) ≤ V (ẽ)} (5.9)

where ẽ is the error at time t̃ when the feedback linearization becomes possible. Then,
the control law is feasible under the input constraints for all e ∈ Ẽ . Moreover, Ẽ is a level
set of the Lyapunov function and thus forms a natural control invariant set. Accordingly,
e ∈ Ẽ ∀t ≥ t̃ and therefore u ∈ Uu ∀t ≥ t̃. The proposed controller therefore both globally
asymptotically stabilizes the system and satisfies the input constraints.

Remark 22: For e close to the boundary, i.e. e ∈ Ẽ → ∂Ẽ , the parameters for K are
close to zero. As e5 → 0 for t increasing, e moves away from the boundary and it
becomes possible to choose larger values.

With the result from Theorem 4, the global stability of the proposed controller has been
shown. This shows the capability of micro-orbiting as a strategy to overcome input
constraints posed though failing actuators.

One thing the controller lacks, on the other side, is the ability to avoid unsafe states
which often mark states that would result in crashes. This can be solved using one of the
controllers that are presented in the following.

5.2 Model Predictive Control Using Feedback-Linearization

The second controller presented in this work is an MPC controller which addresses some
limitations of the controller described in Section 5.1. This MPC controller employs a
terminal controller based on feedback linearization of the system’s nonlinearities. The
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approach draws inspiration from [55], but differs in its linearization method. Instead
of using a first-order Taylor approximation, this terminal controller applies feedback
linearization. For a detailed comparison between these approaches, see Remark 28.

As MPC is a discrete-time method, the model is discretized using the Euler-forward
method. For the MPC controller itself, the error dynamics of the orbit center (Eq. (4.21))
are discretized, but the non-transformed input F is used instead of u (ref. Eq. (4.19)).

et+1 = et + δėt

= et + δ





e3
e4

sinαf(e5)− χ̈1

− cosαf(e5)− χ̈2

0

ω0 + e5

+

I2×3

RM

I1×3

F


=: Φ(et,Ft)

(5.10)

The trajectory tracking MPC problem is formulated in agreement with Section 2.3.2 using
the input

ũt+k|t = m
(
χ̈1(t+ k) χ̈2(t+ k) 0

)T (5.11)

that perfectly tracks the trajectory and Ft+k|t = ūt+k|t +R−1
t+k|tũt+k|t.

Remark 23: As the error dynamics of the orbit center are used, the additional
constant input Fcomp is applied implicitly.

Remark 24: The nominal inputs ũt+k|t are in global coordinates. As the orientation
αt+k|t is not known a priori, the transformation R−1

t+k|t becomes part of the MPC
problem.

The MPC problem can then be formulated as

minimize
Ū

V (e0) =
N−1∑
k=0

[
eTt+k|tQeet+k|t + ūT

t+k|tQuūt+k|t
]
+ lN(et+N |t)

subject to et+k+1|t = Φ(et+k|t, ūt+k|t +R−1
t+k|tũt+k|t) k = 0, . . . , N − 1,

et+k|t ∈ X k = 0, . . . , N − 1,

ūt+k|t +R−1
t+k|tũt+k|t ∈ U k = 0, . . . , N − 1,

et+N |t ∈ Xterm,

et|t = e0
(5.12)

The set X is the set of safe states and the set U is given by Definition 9. The expressions
for the terminal set Xterm and the terminal cost lN(e) are not yet specified. The rest of
this section is dedicated to designing them such that they stabilize the system.
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5.2.1 Terminal Controller

Stability is ensured by employing a dual-mode principle with an MPC controller until
horizon N and a terminal controller for k ≥ N . The terminal controller is, due to the
receding horizon, never actually used, but serves to ensure that at least one stabilizing
control law exists at all time. In the MPC problem (5.12), the existence of the terminal
controller is reflected implicitly through the terminal cost and set.

In the following, the terminal controller is proposed. It is derived similarly to the controller
for Section 5.1 and a schematic block diagram is shown in Figure 5.2. Ignoring the
difference between the continuous-time and discrete-time models, the inner system shows
the block diagram of the orbit dynamics as in Eq. (4.21) with input u, while the outer
system shows them as in Eq. (5.10) with the input F .

f(e5) R

Double
Integrator

Double
Integrator

Double
Integrator e5

α

Inner system as in Eq. (4.21)

−Kω

Feedback-
Linearization

Outer Loop
Controller

e1

e3

e2

e4

R

u3

u1

u2

MM−1
F

R−1

Outer system as in Eq. (5.10)

= I

Figure 5.2: The terminal controller for the MPC controllers based on feedback
linearization, a linear controller for e5 and an additional controller for the linearized
system. The mux and demux blocks have been borrowed from Simulinks notation.

As said in the foregoing section, the input of the MPC controller is F . The terminal
controller, in contrast, compensates for M and R, which needs to be taken into account
once the terminal cost is calculated. Using the compensation, the part in the dashed box
cancels out and the terminal controller can also be displayed as in Figure 5.3.

Remark 25: From Figure 5.3, an important aspect of the system structure becomes
visible, as also discussed in Section 4.5: The integrators of e5 and α form a closed
loop with the linear feedback law −Kωe5. The nonlinearity only depends on e5, which
is why it can be cancelled out completely.

Figures 5.2 and 5.3 are the schematics for both the current terminal controller as well
as the one of the following section. The difference lies in the block named "Outer Loop
Controller", which is a different controller for both cases. In this section, it is a simple
linear feedback controller.
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f(e5) R

Double
Integrator

Double
Integrator

Double
Integrator

e5

System

−Kω

Feedback-
Linearization

Outer Loop
Controller

e1

e3

e2

e4
u3

u1

u2

Figure 5.3: The terminal controller after compensation of RM .

For this outer loop control law, the full (compensating) terminal control law can be given
as

ū = M−1R−1

− sinαf(e5)

cosαf(e5)

0

−Kek


= M−1R−1[Rf(e5)−Kek]

(5.13)

with

f(e5) =

 0

f(e5)

0

. (5.14)

The state feedback matrix K is chosen such that the feedback-linearized system of the
form

ek+1 =

(
02×3 I2×2

03×3 03×2

)
ek +

(
02×3

I3×3

)
(−K)ek (5.15)

is stable. The proof of stability is postponed to Section 5.2.3 where a set is derived for
which the controller is guaranteed feasible.

5.2.2 Terminal Cost

The real infinite-horizon cost l̃N(e0) of the terminal controller can be calculated as

l̃N(e0) =
∞∑
k=0

[
eTkQeek + ūT

kQuūk

]
. (5.16)

where the index starting from N is already shifted to zero for simplicity of notation.
Calculating this function is, for general nonlinear systems, a tedious endeavour: First an
explicit formulation for the trajectory and then another explicit form for the quadratic
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cost needs to be found. In practice, this is often infeasible. Thus, in the following an
upper bound lN(e) ≥ l̃N(e) is derived.

For linear systems, explicit solutions for the state evolution are known and due to the
feedback-linearization, the state evolution of the given nonlinear system behaves as a linear
one. With a feedback matrix AK of the linearized and controlled closed-loop system, the
state trajectory can directly be calculated from

ek+1 = AKek (5.17)

as

ek = Ak
Ke0. (5.18)

The value of the infinite sum
∑∞

k=0 e
T
kQeek, the left term of Eq. (5.16), can be calculated as

eT0 PQe0. PQ is here the solution of the corresponding Lyapunov function AT
KPQAK−PQ =

−Qe which always has a solution as the controlled system is stable.

For the second term, however, the explicit calculation is not as straightforward: The
explicit formulation of the state evolution still holds, but the controller has nonlinearities,
on the one hand through the rotation matrix R and on the other hand through f(e5).
Instead, an upper bound for the control cost is derived in the following.

In order to achieve this, the following inequality is presented an intermediate result:[
f(e5) +R−1(−Kek)

]T
Q̃u

[
f(e5) +R−1(−Kek)

]
≤2∥Q̃u∥2

(
∥f(e5)∥22 + ∥ −Kek∥22

) (5.19)

Proof It is derived by[
f(e5) +R−1(−Kek)

]T
Q̃u

[
f(e5) +R−1(−Kek)

]
=
∥∥LT

(
f(e5) +R−1(−Kek)

)∥∥2

2

Here, Q̃u is a positive definite, symmetric matrix and therefore, the Cholesky
decomposition Q̃u = LLT exists. Continue with

≤∥L∥22
∥∥(f(e5) +R−1(−Kek)

)∥∥2

2

≤∥Q̃u∥2
(
∥f(e5)∥2 + ∥R−1(−Kek)∥2

)2
Note that ∥R∥2 = 1 as R is a rotation matrix and thus

=∥Q̃u∥2 (∥f(e5)∥2 + ∥ −Kek∥2)2

≤2∥Q̃u∥2
(
∥f(e5)∥22 + ∥ −Kek∥22

)
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In the last step, the Arithmetic-Mean-Quadratic-Mean Inequality [75], i.e.

(a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0

has been used which closes the derivation.

Now bound the infinite-horizon control cost of the controller (5.13) from above:

∞∑
k=0

ūT
kQuūk (5.20)

=
∞∑
k=0

[
M−1R−1(Rf(e5)−Kek)

]T
Qu

[
M−1R−1(Rf(e5)−Kek)

]
(5.21)

≤
∞∑
k=0

[−R−1Kek + f(e5)]
T (M−1)TQuM

−1︸ ︷︷ ︸
:=Q̃u

[−R−1Kek + f(e5)] (5.22)

where M is invertible and Qu positive definite, wherefore also Q̃u is positive definite and
Eq. (5.19) is applicable. The full infinite-horizon cost of the controller (5.16) follows then
as

l̃N(e0) =
∞∑
k=0

eTkQeek + ūT
kQuūk

≤
∞∑
k=0

[
eTkQeek + 2∥Q̃u∥2

(
∥f(e5)∥22 + ∥(−Kek)∥22

)]
= eT0 PQe0 + 2∥Q̃u∥2

(
eT0 PKe0 +

(2ω0r)
2e25[0]

1− (1−Kω)2
+

4ω0re
3
5[0]

1− (1−Kω)3
+

r2e45[0]

1− (1−Kω)4

)
:= lN(e0)

(5.23)
The last expression follows as the infinite sum can be calculated explicitly: The parts∑∞

k=0 e
T
kQeek and

∑∞
k=0 ∥(−Kek)∥22 =

∑∞
k=0 e

T
kK

TKek can directly be evaluated by
finding a solution PQ resp. PK to the corresponding Lyapunov function. The solvability
follows as stated earlier from the stability of the linearized system and its system matrix
AK .

For the middle term, the linear dynamics e5[k+1] = (1−Kω)e5[k] ⇒ e5[k] = (1−Kω)
ke5[0]

and the formula for the infinite geometric series can be used:

∞∑
k=0

∥f(e5)∥22 =
∞∑
k=0

∥f(e5)∥22 (5.24)

=
∞∑
k=0

(2ω0r)
2e25 + 4ω0re

3
5 + r2e45 (5.25)

=
∞∑
k=0

(2ω0r)
2((1−Kω)

2)ke25[0] + 4ω0r((1−Kω)
3)ke35[0] + r2((1−Kω)

4)ke45[0]

(5.26)



60 | Control Through Micro-Orbiting

=
(2ω0r)

2e25[0]

1− (1−Kω)2
+

4ω0re
3
5[0]

1− (1−Kω)3
+

r2e45[0]

1− (1−Kω)4
(5.27)

The convergence of the expression follows from the stability of the linearized system which
implies ∥1−Kω∥ < 1.

5.2.3 Terminal Set

The inequality that is derived in the previous section is a bound on the infinite horizon cost
if the terminal control law (5.13) is applied. It is based on the fact that the state evolution
of the feedback-linearized system can be calculated explicitly. Therefore, the bound only
holds in the region where the control law is admissible under the input constraints. Thus,
the terminal set is determined in the present section as a control invariant set that satisfies
the input constraints.

In order to find a feasible terminal set, take the set

Uf = {F = M−1R−1u ∈ U|uTu ≤ rΦ}
= {MF = R−1u ∈ MU|uTu ≤ rΦ}
= {MF = u ∈ MU|uTu ≤ rΦ}

(5.28)

as the largest ball of compensated inputs u satisfying the input constraints that is centered
at the origin. Notice that R does not need to be taken into account explicitly as the set
is a ball and therefore rotationally invariant, i.e. u ∈ Uf ⇒ R−1u ∈ Uf ∀α. The set MU
is the linear projection of U by M .

The parameter rΦ can be found by solving the optimization problem (ref. [42, ch. 8.4.2]
for how to formulate this problem as a convex optimization problem)

maximize
rΦ

rΦ

subject to u ∈ MU ∀uTu ≤ rΦ
(5.29)

using a suitable solver. Then,

uTu ≤ rΦ (5.30)

⇔
√
rΦ ≥

∥∥∥∥∥∥
− sinα

cosα

0

f(e5) +

χ̈1

χ̈2

0

−Ke

∥∥∥∥∥∥
2

(5.31)

≥

∥∥∥∥∥∥
− sinα

cosα

0

re25

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥2ω0re5

− sinα

cosα

0

−Ke

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
χ̈1

χ̈2

0

∥∥∥∥∥∥
2

(5.32)

⇔
√
rΦ −

∥∥∥∥∥∥
χ̈1

χ̈2

0

∥∥∥∥∥∥
2︸ ︷︷ ︸

=:c1

≥ r︸︷︷︸
=:c2

e25 +max
α

∥∥∥K̃∥∥∥
2︸ ︷︷ ︸

=:c3

∥e∥2 (5.33)
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where c1 − c3 are introduced for the ease of notation and therefore

c2e
2
5 + c3

√
eT e ≤ c1

⇔ c23e
T e ≤ c21 − 2c1c2e

2
5 + c22e

4
5

eT C̃e−c22e
4
5︸ ︷︷ ︸

≤0

≤ eT C̃e ≤ c21 (5.34)

where the variables K̃ and C̃ follow by direct calculation.

On the one hand, this poses a constraint on the maximal acceleration of the trajectory
under actuator failures. On the other hand, the last inequality marks a set of states within
which the control law is feasible.

In order to get an invariant set from Eq. (5.34), another optimization problem can be
solved: The Lyapunov function eTPe of the linearized system naturally gives invariant
level sets. The question is which of those is the largest invariant set, i.e.

maximize
β

β

subject to eT C̃e ≤ c21 ∀eTPe ≤ β
(5.35)

where β is the upper limit for the level set. Due to the constraint this cannot be
implemented directly, but the problem can be reformulated using the s-procedure [42,
appendix B.2]. This approach reformulates the present constraint as a definiteness
constraint and the problem becomes

maximize
β

β

subject to

(
P 0

0 −β

)
− λ

(
C̃ 0

0 −c21

)
⪰ 0,

λ > 0

(5.36)

Once this optimization problem is solved, the terminal set has been found as

Xterm = {e ∈ R5|eTPe ≤ β}. (5.37)

By the derivation, controller (5.13) satisfies the input constraints for all e ∈ Xterm and
dynamically feasible trajectories.

Remark 26: The formulation in Eq. (5.36) is a slight alteration of the classical s-
procedure as described in [42]: In its standard formulation, the optimization problem
would result as

maximize
β

β

subject to λ̃

(
P 0

0 −β

)
−
(
C̃ 0

0 −c21

)
⪰ 0,

λ̃ ≥ 0

(5.38)
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The multiplication of β with λ̃ makes this problem non-convex. This can be easily
relaxed by introducing a change of variables λ̃ = 1

λ
and multiplying by λ, leading to

the formulation in Eq. (5.35). This is possible when requiring λ̃ > 0 instead of λ̃ ≥ 0

and in this case, simply the inverse of λ̃ is optimized for.

After Xterm has been derived, the stability properties of the terminal controller can be
stated.

Lemma 2: The terminal controller (5.13) stabilizes the discrete-time orbit dynamics
(5.10) asymptotically for all states e ∈ Xterm.

Proof Due to the feedback-linearization, once again a quadratic Lyapunov function can
be derived similar to the previous controller. A suitable K can be derived for the feedback-
linearized system (5.15) by solving the Riccati equation. The solution exists as the system
(5.15) is controllable and observable.

Lemma 2 shows the stability of the terminal controller. What is missing is however the
stability of the MPC controller (5.12) which is established in the next section.

5.2.4 Proof of Stability

With the terminal cost and set determined, the full result can be given.

Proposition 3: Consider the system with dynamics (5.10), state constraints e ∈ X
and input constraints F ∈ U with U from Definition 9. Assume the trajectory χ

is continuously dynamically feasible in the sense of Definition 2. If the system is
controlled with the MPC controller (5.12) with lN given by Eq. (5.23) and Xterm by
Eq. (5.37), the system is asymptotically stable for all states for which problem (5.12)
is feasible.

Proof As the stage cost l is a quadratic function, it is continuous, zero at the origin and
lower-bounded by a class κ∞ function for all ek and uk.

From Eq. (5.23) one can directly see that the terminal cost lN satisfies lN(0) = 0, lN(e) >
0 ∀e ̸= 0 and the continuity of lN not only at the origin, but globally. Furthermore, the
definitions of X , U and Xterm ensure that they are all closed and contain zero in their
interior.

As Xterm was constructed such that a controller exists that stabilizes the system for all
e ∈ Xterm (ref. Lemma 2), the set is control invariant. For the same control law, the
terminal cost lN is constructed in Eq. (5.23) such it bounds the infinite-horizon cost of
the controller from above. This directly ensures

lN(Φ(e0, ū0 + ũ0))− lN(e0) + eT0Qee0 + ūT
0Quū0 ≤ 0 (5.39)

as the inequality holds for every single time step. Therefore, the proof follows immediately
from Theorem 2.
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Remark 27: An almost identical approach could be used for the continuous-time
model of the orbit dynamics. In this case, the stability of the freeflyer under actuator
failures can be shown easily and directly. In the following section, however, the last
controller is derived which makes use of the inherently discrete eMPC. Therefore,
a discrete-time formulation has also been used in this section to unify the stability
proofs and to better show the similarities and differences between the controllers.

Remark 28 (Comparison to standard nonlinear MPC methods): One of the classical
results for nonlinear MPC is [55]. This work uses a terminal cost and terminal set
approach, where the system is linearized around the desired setpoint. The approach
goes as follows:

1. Find a locally stabilizing controller K based on the Jacobian linearization of
the system

2. Solve a special Lyapunov function whose solution can be used as a terminal cost
function. The solution will be ensured to match or overapproximate the actual
cost from step N .

3. Find the largest set in which u = Kx satisfies the input constraints U .

4. Find the largest subset in which also the overapproximation holds.

The issue of this approach for the problem at hand is that α is not a controlled
variable. Therefore, the Jacobian linearization becomes state-dependent. There are
multiple solutions for this:

The obvious, but undesirable, solution would be to have a trajectory that includes the
orientation α. Then linearization around the error 0 would become possible and the
results be applicable. This however removes the advantages of the additional degrees
of freedom that the controller has: Not only the orientation, but also the position of
the freeflyer on the orbit would be fixed.

Solutions with time-dependent terminal sets would also be possible. They may be,
albeit viable, undesirable due to the additional computational cost that they entail.

The final solution is the one used here, where step 1 is replaced by a feedback
linearization and the overapproximation of the terminal cost in step 2 is directly
calculated instead. The equivalents to steps 3 and 4 is performed in Section 5.2.3
where a terminal set is sought that satisfies all constraints.

It may be noted, however, that key ideas such as (1) finding a terminal controller, (2)
deriving a terminal cost and set and (3) overapproximating the actual infinite horizon
cost are similar.

The advantage of this approach is that a constant terminal set can be calculated while
keeping as many degrees of freedom as possible.
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5.3 Model Predictive Control Using Explicit MPC

In anticipation of the discussion, the terminal set for the controller in the previous section
is rather small. This makes intuitively sense as the terminal controller needs control
action to both feedback-linearize the system and drive the linearized system to zero. The
linearized system uses a linear controller with limited available control, resulting in a small
set where the control law is valid. This aligns with experience from similar control schemes
based on linearization [55] (ref. Remark 28). In the present case, the control authority is
further reduced in comparison to the nominal case due to the actuator failures.

With a closer look at the dynamics of the feedback-linearized system dynamics (5.15),
one can however see that the linearized system simply consists of multiple integrators.
It is therefore intuitively reasonable to assume that the linearized system can even be
stabilized using a control law that is saturated once the input constraints are reached.
A controller for this is rather easy to derive using techniques for linear systems under
input constraints. In order to use it in a terminal controller, the limiting problem is then
still to derive a cost function that can be used to show closed-loop stability of the MPC
controller.

Besides of traditional anti-windup schemes and similar concepts, a different approach
has been proposed around 20 years ago: Explicit MPC (eMPC) allows to formulate (not
only input) constrained control problems and to derive a parametric, i.e. explicit state-
feedback solution for them. Its advantage in this context is that it also allows to easily
derive a cost function that can be used as terminal cost. This comes from its foundation
in optimization, which enables it to seamlessly integrate within the existing framework.

This idea will be followed for the last controller that is proposed in this chapter.
In particular, the complete terminal controller will be analyzed regarding its stability
properties and the resulting terminal cost and set.

Note that for the resulting MPC controller only the terminal cost and set change: Just the
terminal controllers are different that are used to derive the aforementioned ingredients.
The controller can therefore still be written as (5.12), only with adapted Xterm and lN(e).
The symbols Xterm and lN(e) themselves are not changed between Sections 5.2 and 5.3
and within each section, the symbol always belongs to the respective controller. In the
following, every variable that belongs to the eMPC-part of the terminal controller is
denoted with a hat while for the actual MPC controller, the previous notation is kept.

5.3.1 Terminal Controller

As already introduced in the introduction to this section, this terminal controller uses
eMPC together with feedback-linearization. Thus, the controller can be displayed as in
Figures 5.2 and 5.3, with and without the compensation of RM , respectively. The "Outer
Loop Controller" is in this case accordingly an eMPC controller.
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The eMPC controller is defined as follows: Consider the feedback-linearized system

êk+1 = ϕ̂(êk, ûk) =


1 0 δ 0

0 1 0 δ

0 0 1 0

0 0 0 1

êk +


0

0

δ

δ

ûk (5.40)

under the yet-to-be-defined input constraints ûk ∈ UeMPC and with ê ∈ R4 such that

e =

 ê

e5
α

. (5.41)

Remark 29: This is the Euler-forward discretization of a system consisting of two
double integrators. For the linearized system, it would also be easy to calculate the
exact discretization at the sampling times. This variant is however consistent with
the formulation of the MPC controller as it is the feedback-linearized e1-e4-subsystem
of Eq. (5.10).

The control µk = µ(ek) is the optimal piecewise linear and continuous solution to the
optimization problem (i.e. the eMPC controller)

minimize
Û

N̂∑
k=0

[
êTt+k|tQ̂eêt+k|t + ûT

t+k|tQ̂uût+k|t

]
+ êT

t+N̂ |tPeMPCêt+N̂ |t

subject to êt+k+1|t = ϕ̂(êt+k|t, ût+k|t),

êt+k|t ∈ X̂ k = 0, . . . , N̂ ,

ût+k|t ∈ UeMPC k = 0, . . . , N̂ ,

êt+N̂ |t ∈ X̂t,

êt|t = êt

(5.42)

where the terminal set X̂t is chosen as described in Section 2.4 and X̂ is the set of allowed
states.

With this, the terminal controller for the second MPC controller in this work can be given
as

F = M−1R−1

µk +Rf(e5) +

 0

0

−kωe5


= M−1R−1

(
µk + ufb

k

)
.

(5.43)

In difference to the terminal controller for the previous section, the complete controller
(5.43) completely separates the control of the rotational and the translational subsystems.
The error in the angular velocity e5 ∈ R is controlled by the linear feedback while the
position and velocity in R4 are controlled by eMPC. For the simplicity of the notation,
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in some cases µk is written where actually
(
µT
k 0

)T would be correct, i.e. where a zero
would be appended to match the correct dimensions.

Remark 30: The presented approach is not the first time when the combination of
feedback linearization and MPC is proposed: In [76] (see also [77]), the system is
feedback-linearized and the linearized system is controlled via MPC. This is different
from the presented approach as in the referenced work, the system itself is controlled
with linearization and MPC while in this work, only the terminal controller is
feedback-linearized - the system itself and the actual MPC controller are treated
as nonlinear. This way, potentially beneficial nonlinear dynamics can be exploited by
the controller.

5.3.2 Terminal Cost

The stage cost for the eMPC is a sum of quadratic terms of inputs e and µk (notice
that the error for the eMPC is the same as for the whole translational system) and the
infinite-time cost is given as

leMPC(e0) =
N̂∑
k=0

[
êTk Q̂eêk + µT

k Q̂uµk

]
+ êT

N̂
PeMPCêN ≥

∞∑
k=0

êTk Q̂eêk + µT
k Q̂uµk. (5.44)

The terminal cost matrix PeMPC is chosen such that, for the chosen Q̂e and Q̂u, it leads
to a stabilizing terminal cost and consequentially the inequality holds. A simple selection
is the cost of the infinite horizon optimal control problem with a suitable eMPC terminal
set.

Remark 31: Be careful with the notion of a terminal set here: As an MPC scheme
(eMPC) is used "within" another MPC scheme, there are two terminal sets. In
general, the one of the actual controller (5.12) is meant and otherwise it is specified
explicitly that the one of the eMPC controller is meant as done here.

To make the following derivations, two assumptions are necessary: First of all, the matrix
Qu with which the control cost is calculated is diagonal and the first two indices are
identical

Qu =

qu1 0 0

0 qu1 0

0 0 qu3

. (5.45)

Additionally, Qe with which the state cost is calculated has no coupling between the
position and the angular velocity, i.e.

Qe =

Q̂e 0 0

0 qe5 0

0 0 0

 (5.46)

where the cost of α is zero due to the micro-orbiting.
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Before the full calculation, use µk =
(
µ1,k µ2,k

)T and observe that

µT
k (R

−1)T Q̃uR
−1ufb

k

=µT
k (R

−1)T Q̃u

f(e5) +R−1

 0

0

−kωe5


=[(µ1,k cosα + µ2,k sinα)r(−kωe5) + (−µ1,k sinα + µ2,k cosα)f(e5)]m

2qu1

≤
√

µ2
1,k + µ2

2,k(∥ − rkωe5∥+ ∥f(e5)∥)m2qu1

≤
√

µ2
1,max + µ2

2,maxm
2qu1(∥ − rkωe5∥+ ∥(2ω0 + e5)e5r∥)

where the relationship a cosx+ b sinx = sgn(a)
√
a2 + b2 cos(x+arctan −b

a
) has been used

[78]. The variables µ1,max and µ2,max are introduced as the values for µ1,k and µ2,k that
independently maximize the norm in their allowed set.

Keeping in mind that e5 is time dependent with e5[k] = (1− kω)
ke5[0] follows further

∞∑
k=0

µT
k (R

−1)T Q̃uR
−1ufb

k

≤
√

µ2
1,max + µ2

2,maxrm
2qu1

∞∑
k=0

[
(1− kω)

2ke5[0]
2 + (kω + 2∥ω0∥)(1− kω)

k∥e5[0]∥
]

=
√

µ2
1,max + µ2

2,maxrm
2qu1

(
e5[0]

2

1− (1− kω)2
+

kω + 2∥ω0∥
1− (1− kω)

∥e5[0]∥
)
.

(5.47)

The term (1− kω)
k is always positive if kω < 1 which gives together with the requirement

for stabilization possible values for kω as kω ∈ (0, 1).

Remark 32: It would be possible to choose kω ∈ (0, 2), but in this case the series
expansion is slightly more complicated. Also, the terminal set for the third input
would become small which will become clearer in the next section.

Now calculate the cost as
∞∑
k=0

eTkQeek + F TQuF

=
∞∑
k=0

eTkQeek + [M−1R−1(µk + ufb
k )]

TQu[M
−1R−1(µk + ufb

k )]

=
∞∑
k=0

eTkQeek + [R−1(µk + ufb
k )]

T (M−1)TQuM
−1︸ ︷︷ ︸

=:Q̃u

[R−1(µk + ufb
k )]

=
∞∑
k=0

eTkQeek + µT
k (R

−1)T Q̃uR
−1µk

+
∞∑
k=0

2µT
k (R

−1)T Q̃uR
−1ufb

k + (ufb
k )

T (R−1)T Q̃uR
−1ufb

k
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with Eq. (5.46) and Eq. (5.41)

=
∞∑
k=0

êT Q̂eê+ µT
k (R

−1)T Q̃uR
−1µk + qe5

∞∑
k=0

e25

+
∞∑
k=0

2µT
k (R

−1)T Q̃uR
−1ufb

k + (ufb
k )

T (R−1)T Q̃uR
−1ufb

k

Choose Q̂u − [(R−1)T Q̃uR
−1] ⪰ 0 ∀α and it follows

≤
∞∑
k=0

êT Q̂eê+ µT
k Q̂uµk + qe5

∞∑
k=0

e25

+ 2
∞∑
k=0

µT
k (R

−1)T Q̃uR
−1ufb

k +
∞∑
k=0

(ufb
k )

T (R−1)T Q̃uR
−1ufb

k

and using Eq. (5.44),

≤leMPC(e0) + qe5

∞∑
k=0

e25 + 2
∞∑
k=0

µT
k (R

−1)T Q̃uR
−1ufb

k +
∞∑
k=0

(ufb
k )

T (R−1)T Q̃uR
−1ufb

k

which yields with Eq. (5.47) and Eq. (5.43)

≤leMPC(e0) + qe5

∞∑
k=0

e25

+ 2
√
µ2
1,max + µ2

2,maxrm
2qu1

(
e5[0]

2

1− (1− kω)2
+

kω + 2∥ω0∥
kω

∥e5[0]∥
)

+
∞∑
k=0

(f(e5) +R−1(−kωe5))
T Q̃u(f(e5) +R−1(−kωe5)).

Finally applying the previous result Eq. (5.19) and using the series expansion equivalently
to Eq. (5.23) gives

≤leMPC(e0) + qe5

∞∑
k=0

e25

+ 2
√

µ2
1,max + µ2

2,maxrm
2qu1

(
e5[0]

2

1− (1− kω)2
+

kω + 2∥ω0∥
kω

∥e5[0]∥
)

+ 2∥Q̃u∥2
(
eT0 PKe0 +

(2ω0r)
2e25[0]

1− (1− kω)2
+

4ω0re
3
5[0]

1− (1− kω)3
+

r2e45[0]

1− (1− kω)4

)
=: lN(e0) (5.48)

which concludes the calculation.

The derived terminal cost lN(e0) is then piecewise defined due to the eMPC scheme
involved. As it is piecewise quadratic and continuous, it anyhow forms a valid cost
function. The terminal cost could be used directly, but then likely a common and well-
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known problem of eMPC arises in practice: Checking the current state for the set in which
it lies has proven to be computationally expensive and this operation would potentially
be performed frequently by the solver.

A better idea is to bound the eMPC cost with a quadratic or higher-order polynomial
from above. This is possible as the origin lies within the interior of one of the sets1. In
combination with the piecewise quadratic nature and continuity of the eMPC cost, the
bound thus becomes possible. This way, the solver for the actual MPC controller can
avoid unnecessary computational overhead.

5.3.3 Terminal Set

As for the first MPC controller, the terminal cost is only valid in the region where the
input constraints are not violated by the terminal controller - only there the system will
evolve as predicted. The difference lies within the ability of the eMPC part of the terminal
controller to handle the constraints better which results in a bigger terminal set.

The region of recursive feasibility and stability of the controller is now derived as follows:
First of all the inputs necessary for nominally following the trajectory are taken into
account. In the second step, ufb

k is considered, i.e. the control of the angular velocity and
the feedback linearization. This is done parametrically first and when the parameter is
fixed, it leads to input constraints for the eMPC. By calculating the eMPC controller in
the final step, on the one hand the value of leMPC(e0) becomes explicit and on the other
hand the state constraints for e1 to e4 are determined.

Feedback-linearizing control Assuming dynamic feasibility of the trajectory in the sense
of Definition 2, the necessary inputs for nominally following the trajectory satisfy ũ ∈ Ũ
and then the remaining inputs to control the error dynamics becomes Ū = M−1U ⊖
M−1Ũ .

Remark 33: The factor M−1 is applied so that the calculation can be performed in
the "half-compensated" space with ŭ, ref. Eq. (4.15).

In order to include ufb
k into the considerations, first u3 is taken into account. As follows

from the system dynamics (Eq. (5.10)) and the control law (Eq. (5.43)) (ref. also
Figure 5.3), u3 forms a closed, linear control loop with a single integrator to e5. With this
subsystem

e5[k + 1] = e5[k] + u3, (5.49)

the linear feedback law

u3 = −kωe5 (5.50)

1Within the region around the origin where the infinite-horizon optimal controller satisfies the
constraints, the infinite-horizon optimal controller is also trivially optimal. Accordingly, the solution
of the eMPC controller is equal to the infinite-horizon controller in said region. Due to the assumption
of 0 ∈ Int(X ), 0 ∈ Int(U) and the linearity of the infinite-horizon optimal controller, such a set always
exists.
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and the yet parametric, soon explicit bounds

−u3,max ≤ u3 ≤ u3,max (5.51)

the region of feasibility of the control law can be given as

Xt,2 =

{
e5 ∈ R

∣∣∣− 1

kω
u3,max ≤ e5 ≤

1

kω
u3,max

}
. (5.52)

At the same time, this is also the region of attraction and a control invariant set which
can be easily shown using a quadratic Lyapunov function.

Determination of u3,max and the input set for eMPC As the feedback linearization term
only depends on e5, the previous result allows to draw conclusions also on the control
action necessary for the feedback-linearizing part of the controller. With Equations (4.22),
(5.14) and (5.52), the set of inputs necessary for feedback-linearization can be calculated
as

Ufblin =

{
u ∈ R3

∣∣∣u3 = 0, ∥u∥ ≤
(

1

kω
u3,max + 2ω0

)
1

kω
u3,maxr

}
(5.53)

and the set of remaining controls for the linear system becomes

Ulinear = Ū ⊖ Ufblin. (5.54)

As established by Section 2.1, the set Ulinear can be written as a direct parametrization
of u3,max and becomes smaller with an increasing u3,max.

A full sketch of the different sets is shown in Figure 5.4: First of all, a part of the
constraining set M−1U is removed by taking the dynamic feasibility into account. From
this the term Ufblin is subtracted that depends on u3,max.

The set Ulinear remains available for the linear controller (5.50) and the eMPC controller.
However, two more criteria need to be met by the final input bounds: First of all, the
linear controller and the eMPC act independently from each other while using a shared
input space. Constraint satisfaction can be ensured by defining two subspaces Uω and
UeMPC and ensuring Uω ×UeMPC ⊆ Ulinear. The interval constraint Uω is already given by
Eq. (5.51).

The second additional constraint emerges as all calculations have so far been performed
in the projection M−1U . The actual input u instead needs to satisfy the constraints
u ∈ R−1M−1U , i.e. the compensation of R has so far been left out.

As stated in Section 2.1, however, if UeMPC is a circular cross-section of R3 with

UeMPC =

{
u ∈ R3

∣∣∣uT

(
I2×2 0

0 0

)
u ≤ reMPC

}
,
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M−1U

Ulinear

ŭ3 ŭ1

acceleration
(for dynamic feasibility)

feedback linearization
(depends on u3,max)

u3,max

reMPC

Figure 5.4: Sketch of the different sets in the input domain used to derive the terminal
set. Shown is a projection on the ũ1-ũ3-axis, with ũ from Eq. (4.16).

it fulfills

Û ⊕ Ufblin ⊕ (Uω × UeMPC) ∈ M−1U

for every UeMPC with

Uω × UeMPC ⊆ Ulinear.

Additionally, the set is rotationally invariant and therefore v ∈ UeMPC ⇒ Rv ∈ UeMPC,
i.e. the compensation of R is always ensured. In other words, in this case the satisfaction
of the input constraints is ensured.

The remaining task is now to fix a "good" value for u3,max. Based on this, a "good" set
Uω × UeMPC can be found and with this, the terminal set Xterm can be calculated. The
most direct answer to what makes good selections is that the volume of Xterm should
be as big as possible. This is however not a trivial task as there is no direct method
of computation for recursively feasible sets which is parametrizable by u3,max and reMPC.
Therefore, the parameters are calculated that maximize the volume of Uω ×UeMPC which
gives at least some sort of optimality. This is achieved by solving an optimization problem
in adaption of the problems discussed in [42, 8.4.2]: Write the individual constraints of
Ulinear as aix ≤ bi(u3,max). The largest volume inscribed cylinder is

maximize
u3,max, reMPC

2 log reMPC + log 2u3,max

subject to

∥∥∥∥∥∥ai
reMPC 0

0 reMPC

0 0

∥∥∥∥∥∥
2

+ ai

 0

0

±u3,max

 ≤ bi(u3,max)
(5.55)

It can be checked easily by direct calculation that the objective function is the logarithm
of the volume, leaving out the unnecessary constant log π.

The formulation would be entirely convex if the bounds of Ulinear were constant. As this
is not the case, a nonlinear solver needs to be utilized.

In a last step, to be allowed as a constraint for eMPC, the constraint must be a polytope.
Therefore, UeMPC needs to be approximated from inside as a (potentially regular) polytope.
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Calculation of Xterm Once the input sets for the different controllers have been fixed, the
eMPC can finally be calculated. By solving problem (5.42) as described in [59], two results
can be computed: First of all, the control law µk, but also the cost function leMPC(ê) that
was not explicitly known so far. The control law is a piecewise defined linear law which
is defined only within the union of its partition regions and undefined outside, i.e.

Xt,1 = {ê ∈ R4|µ(ek) ̸= ∅}. (5.56)

For Xt,1 it is however guaranteed to be stabilizing. Combined with Xt,2 from Eq. (5.52), a
recursively feasible region of attraction can be calculated and chosen as the terminal set

Xterm = Xt,1 ×Xt,2. (5.57)

The main feature of this terminal controller and thus terminal set is that its size depends
on the eMPC horizon N̂ : With an increasing N̂ , the set becomes bigger. But as the
eMPC calculations are preformed offline, this does not reflect in a higher computational
effort of the resulting MPC scheme.

For the controller in Section 5.2, the feedback-linearized system could only be stabilized
within the feasible range of a linear feedback control law. The eMPC controller in turn
gets rid of this and extends its (recursively) feasible set beyond the limitations of a linear
control.

Remark 34: In fact, the eMPC uses a linear control law for the derivation of its own
terminal set. The expansion of this region stems from the utilization of a nonlinear
control law.

Remark 35: The terminal set can not be increased to infinity, or in most cases not
even the complete feasible set: On the one side, the achievable size is limited by
a practical constraint of eMPC. The computational time increases exponentially for
large dimensions and horizons. Therefore, only the choice of a relatively limited N̂ is
sensible.

On the other side, the state constraints in eMPC are formulated as convex sets. Maps
with obstacles in between are therefore not permissible.

After all, however, the main point still stands that this terminal controller can
extend the terminal set into regions that input saturations previously prohibited.
A comparison how this looks like in practice can be found in Chapter 6.

This closes the derivation of the MPC controller. The only thing left is to prove its
stability which takes place in the following section. As an intermediate result, however,
the stability of the terminal controller is shown before.

Lemma 3: The controller (5.43) stabilizes the discrete-time orbit dynamics (5.10)
asymptotically for all states e ∈ Xterm.
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Proof The terminal set Xt,2 has been derived such that the linear control law is possible
for all e5 ∈ Xt,2 and its asymptotic stability follows from the requirement kω ∈ (0, 1). The
latter can be easily shown by a quadratic Lyapunov function.

As the feedback-linearizing term only depends on e5 by Eq. (4.22), on the one side
its convergence to zero is then also guaranteed. But more importantly its feasibility
is guaranteed by the inclusion of Ufblin into the calculations of this section.

Therefore, e5 is already stable and the evolution of the states e1 to e4 is described by
Eq. (5.40), i.e. a linear system. For this system, UeMPC is a valid set of inputs with
which the overall input constraints are satisfied irrespective of how the other parts of the
controller act.

Consequently, the eMPC controller can be formulated in a stabilizing way and its stability
can be shown following standard results, ref. [53, Thm. 5.3.2]. The other part of the
terminal set, Xt,1, is hence asymptotically stable which follows immediately. The feasibility
of the controller as a whole within Xterm has been shown in the derivations of this section.

Before the section ends, two remarks shall be given that comment on the derivation of
the terminal set and why it is possible. After that, the next section follows with the proof
of stability of the full MPC controller.

Remark 36: The system structure helps a lot to find a suitable terminal set. First of
all, the error e5 of the angular velocity can be controlled by a one-dimensional control
law and also the closed loop is linear. Even more, the feedback linearizing part only
depends on e5. Therefore a simple parameterization of the set Ulinear becomes possible.

Remark 37: For this system it is possible to break the nonlinearities apart: On the
one hand, there is the nonlinear feedback-linearized term f(e5), but also the rotation
R is nonlinear and compensated. As R is a rotation matrix and therefore has a lot
of known and desirable properties (s.a. ∥R∥ = 1 used in the derivation of the cost
function), the derivations simplify a lot. It is not quite clear if or how this generalizes
on systems with different structures and nonlinearities.

5.3.4 Proof of Stability

After the derivation of the terminal ingredients for the MPC controller, its stability
properties can be given.

Proposition 4: Consider the system with dynamics (5.10), state constraints e ∈ X
and input constraints F ∈ U where U is given in Definition 9. Assume the trajectory
χ is dynamically feasible as of Definition 2. Let the system be controlled by the MPC
controller (5.12) where Qe and Qu satisfy Equations (5.45) and (5.46), lN is given by
Eq. (5.48) and Xterm by Section 5.3.3. Then, the system is asymptotically stable for
all states that allow to solve the optimization problem (5.12).
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Proof The proof for this controller is performed analogous to the one for the previous
one:

Once again, as the stage cost l is a quadratic function, it is continuous, zero at the origin
and lower-bounded by a class κ∞ function for all ek and uk.

The terminal cost lN satisfies the properties lN(0) = 0, lN(e) > 0 ∀e ̸= 0 as clear from
Eq. (5.48) and is continuous. The definitions of X , U and Xterm ensure that they are all
closed and contain zero in their interior.

As Xterm was constructed also in this case such that a controller exists that stabilizes the
system for all e ∈ Xterm (ref. Lemma 3), the set is control invariant. For the same control
law, the terminal cost lN is constructed in Eq. (5.48) such it bounds the infinite-horizon
cost of the controller from above. This directly ensures also for this controller that

lN(Φ(e0, ū0 + û0))− lN(e0) + eT0Qee0 + ūT
0Quū0 ≤ 0 (5.58)

as the inequality holds for every single time step. Therefore, the proof follows immediately
from Theorem 2.

This closes the derivation of the controllers. Three different controllers have been shown
that all use micro-orbiting as a strategy to overcome the nonholonomic constraints which
follow from the actuator failures. One controller is a feedback controller and based
on feedback-linearization, and two are based on MPC. The stability properties of the
first MPC controller were derived using a terminal controller that feedback-linearized
the system locally and then stabilized the linearized system with a linear feedback
controller. The stability properties of the second MPC controller were derived using
a terminal controller that also feedback-linearized the system locally, but then used an
eMPC controller for the linearized system. As will be shown next, this is advantageous
compared to the first MPC controller as it leads to much larger terminal sets.
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Chapter 6

Evaluation

In the previous chapter, three different control laws have been derived of which one is a
feedback-based controller that is based on feedback linearization (ref. Theorem 4). This
control law will be denoted as κfb in the following.

The other two control laws are implicitly defined as optimization problems (ref. Eq. (5.12))
and their optimal solutions for control outputs that are called κ1 and κ2, respectively. The
stability guarantees for κ1 were derived using a terminal controller that feedback-linearizes
the system and controls the linearized system with a linear controller in Section 5.2. For
κ2, the terminal controller was extended by an eMPC scheme for the linearized system in
Section 5.3.

All three controllers are using micro-orbiting as strategy to overcome the nonholonomic
constraints that appear for the error cases C2 and C3.

The remaining part of this work consists of a simulation of the control laws and the
subsequent discussion of the results. Also the advantages and disadvantages of micro-
orbiting will be considered.

The controllers were simulated in Python and implemented using casadi [79]. The eMPC
controller for κ2 was calculated using the pympc library [80]. The sampling time of the
environment and the controllers were chosen differently by a factor of 10 and additional
noise was added. The parameters used in the simulation are given in Appendix B and
the code will soon be made available on GitHub under https://github.com/raphael-j
ms/micro-orbiting.

6.1 Terminal Sets of the MPC Controllers

For the simulation of the controllers, numerical values for the terminal sets of the MPC
controllers are necessary to calculate. For κ1, the derivation is as described in Eq. (5.12).
κ2 needs additional parameters, namely the eMPC state constraint that was chosen to be

https://github.com/raphael-jms/micro-orbiting
https://github.com/raphael-jms/micro-orbiting
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a box constraint
(
−5.0 −5.0 −1.5 −1.5

)T ≤ ê ≤
(
5.0 5.0 1.5 1.5

)T 1. The eMPC
horizon was chosen to N̂ = 50. Based on the eMPC control law, the terminal set of the
control law κ2 was calculated.

The terminal sets for both MPC controllers can be seen in Figure 6.1. It is clear
from previous sections that the terminal sets are multidimensional and therefore only
projections or slices through the sets can be plotted. As the x- and y-direction are
independent from each other, it is sensible to regard position and velocity with e1 and e3
together and equivalent results follow for e2 and e4.

As to be expected, the terminal set for κ2 is much larger than the one for κ1. In fact, the
terminal set for κ1 is only marginally bigger than the set {0} while the set for κ2 stretches
over 5m in both directions along the e1-axis. The latter stems from the design with the
eMPC in the terminal controller. Also when it comes to e5, κ2 is advantageous with e5
within ±0.129 rad for all e ∈ Xterm (as it is an interval constraint). For κ1 in turn, the
maximal and minimal values (as it is an ellipsoidal set) is only ±0.006 rad. For e1 to e4,
the difference in the terminal controllers could be made responsible for the results, but e5
is controlled in both terminal controllers simply with a linear controller. This allows for
the conclusion that additionally the derivation of polytopic constraints is advantageous
over ellipsoidal ones for this system.

Figure 6.1: Terminal sets for κ1 in red and κ2 in cyan. Printed is a slice through the sets
where e2 = e4 = e5 = 0.

Concerning the computational performance of the controllers, there are little differences.
Both controllers κ1 and κ2 solve the optimization problem by average in 0.047 1 s and
0.030 4 s, respectively. The numbers come from the point stabilization problem that is
described next, but there is little difference to the solution of a tracking problem. The
solvers are therefore faster than the controllers’ sampling time of 0.1 s. The simulations
were made on a HP laptop with an AMD Ryzen™ 7 5700U processor.

1The velocity constraints on ê3 and ê4 do not really have an effect for the resulting terminal constraint
of κ2 as the input constraints in combination with the constraints on the position error ê1 and ê2 forbids
these velocities anyway.
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6.2 Point Stabilization

Next, some simulations are presented, one example for point stabilization and one for
trajectory tracking. They do not explicitly show the transition from normal operation
to post-failure recovery but instead start directly at a state in the recovery mode: On a
general level, the presented controllers are designed to act in the "recovery" phase after
(1) the failure occurred, (2) it was noticed and (3) the new controller was prepared for
action. Predicting the trajectory before the recovery phase during the three mentioned
stadiums is hard as it depends on a lot of parameters, some of them implementation
dependent. Therefore it is difficult to predict with which state the recovery phase will
start and the controllers should stabilize the system for potentially large errors. If however,
as attempted in this work, the controller in the recovery phase stabilizes the system for
all possible states, safety is ensured no matter what happens before the recovery phase.
Consequently, only simulations for the recovery phase are necessary.

The first scenario is a point stabilization at the origin. The failed actuators are F3,1 =

F4,1 = Fmax, i.e. the robot experiences a thrust into its local y-axis with the maximal
amount possible. The path that the robot takes with the different controllers is shown in
Figure 6.2 and the corresponding states and inputs in Figure 6.3.

(a) Using κfb (b) Using κ1 (c) Using κ2

Figure 6.2: Path of the different controllers for point stabilization in the x-y-plane. The
axis units are in m. κfb and κ2 start from c =

(
5 5 0.1 0 0 0

)T and κ1 starts from
c =

(
0.5 0.2 0.1 −0.1 0.5 0

)T as the problem is infeasible with the other starting
point. Note that the path is jittery due to the noise, not because of performance issues.

The first plot shows the robots in blue and the two dashed paths are in black the path of
the robot and in grey the path of the center of the orbit. The center of the orbit is marked
with a black dot and a dashed line connects the center of the robot with the center of the
orbit.

When comparing the paths between each other, first of all it can be seen that all controllers
stabilize the system. κfb and κ2 start from the same position far away from the desired
setpoint while κ1 starts with fewer error. This is because of the smaller feasible region,
κ1 would simply not converge at the starting point of the other controllers. κfb and κ2 in
turn have a large feasible region.

Notice that the path is jittery, which becomes - due to the zoom level - mostly visible
for Figure 6.2b, but actually holds for all controllers. This is not due to bad controller
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performance, but because the strong uniform noise in a maximal range over a second2 of
±0.25m. Simulations with less aggressive noise parameters resulted in smooth lines and
the convergence along a perfect circle.

Looking at the paths instead of the state trajectories gives insights on how the robot
behaves under micro-orbiting: The idea of micro-orbiting is to keep the system in a
region around the trajectory or a stationary point and thus preserving safety and a certain
amount of control. In fact, the robot stays within a r-radius around the orbit center point.
And once the center point has converged, it stays in the same radius around the setpoint.
Also, as previously mentioned in Remark 18, the robot’s path only visually resembles an
orbital pattern once the error has been sufficiently minimized.

Regarding the state evolutions and inputs in Figure 6.3 instead of the path gives similar
results for the convergence and performance. The blue line shows the evolution of the
orbit center as this is the controlled value. For the inputs of the MPC controllers the full
input is shown in blue, the input to nominally follow the trajectory in black, the input
calculated by the MPC in red and the compensation to set the virtual fault in grey. The
last three do not all individually satisfy the input constraints of [−3.5N, 0N] for Fx and
Fy, but their sum in blue does. One can also see that the input constraints are satisfied
for κfb, i.e. all controllers satisfy the input constraints.

6.3 Trajectory Tracking

As only the two MPC controllers are suitable for tracking, Figure 6.4 only shows two
controllers that track a circular trajectory of radius 2m. The parameters for the simulation
remained identical to the first one regarding noise and failed actuators. The trajectory is
shown in dark grey and the path of the center trajectory in light grey.

Here once again the advantage of κ2 over κ1 is clear as κ2 has a much larger feasible
set. Besides of this, both controllers let the center of the orbit converge to the trajectory.
The robot itself is orbiting around the trajectory which, together with the motion of the
trajectory, leads to the trajectories shown in Figures 6.4a and 6.4b. At first glance, they
may seem unexpected, but it is just the overlay of two steady rotations, i.e. the rotation
of the trajectory and the rotation of the micro-orbit. If the trajectory was e.g. instead a
linear trajectory with constant velocity, the path of the robot would be come a spiral.

From Figures 6.4c and 6.4d, a similar statement is possible. One can see that the last
state α is unbounded and increasing with a constant rate as for the point stabilization.
This is not a problem and was to be expected as the idea of micro-orbiting is to keep the
system at a constant angular velocity. This directly necessitates an increasing α. The
controlled states are quickly converging towards the desired value and satisfy the input
constraints.

2The noise was added in every time step sampled from a uniform distribution of δenv[−0.25m, 0.25m].
The multiplication by δenv ensures that the cumulative received noise over time remains independent of
the sampling time. When summed over a one-second interval, the resulting distribution of course deviates
from uniformity. The minimum and maximum possible values remain [−0.25m, 0.25m].
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6.4 Results and Discussion

The simulation results show that micro-orbiting can in fact keep the system in an orbit
around the trajectory. The controllability issues and nonholonomic constraints could
successfully be circumvented and a control strategy be found that keeps the system in
a safe region around the trajectory. Although the simulation only considers one specific
failure case, the preceding analysis in Section 3.1.3 showed that the model that was used
can represent the system for all failure cases C2 and C3. Accordingly, its ability to control
the system until at least three actuator of failures was demonstrated.

It has been shown that all of the three controllers could successfully control the system,
which showcases again that micro-orbiting is a general strategy to circumvent the problems
with controllability and nonholonomicity. It is not bound to a certain controller structure
and can be implemented with different approaches.

Comparing the two MPC controllers, κ2 has a better performance that κ1: For κ1, there
are starting states within the range of 2r for which the optimization problem is not
feasible. A state in this range is possible to occur, wherefore this controller in its current
form might not be suitable for ensuring safety - even though, if it is possible to increase
the horizon, it could become good enough.

But even if this is possible, κ2 outperforms κ1 as in the former controller this is not a
problem at all: As the terminal set can be increased by choosing a larger horizon for the
eMPC (terminal) controller, the terminal set for κ2 can be found, within the bounds of
feasibility, practically always as big as desired. This has another advantage as due to a
larger Xterm the feasible set is larger and therefore the horizon of κ2 itself can be smaller.
This in turn leads to a smaller online-optimization problem with lower computational
costs and requirements.

Further comparing κfb and κ2 in Figure 6.2 shows that the orbit of κ2 converges to zero
in almost a straight line while κfb does not take the direct path. As designed, this occurs
because the MPC controller operates in an optimal manner, which is made possible by
including more knowledge about the system into the controller.

Concerning the general differences between MPC and feedback controllers, κ2 allows for
obstacle avoidance if a suitable set X of allowed states is chosen. κfb is not capable of doing
this, but is on the other hand of course much faster to compute, has lower computational
requirements and takes less storage space.

A last difference between κfb and κ2 is that κfb does not allow for trajectory tracking. It
is debatable whether this is a problem: On the one hand, trajectory tracking might not
be necessary and only convergence towards a safe point needed. On the other hand, it
is not said that there is a clear path out of a dangerous zone and even less that it is the
path that κfb will take. Also it can be an advantage in operation if a damaged system
can autonomously return to a place where it can be repaired.

Concerning the terminal controller, another observation can be made: Usually both
feedback linearization as well as (e)MPC require a good model of the system as otherwise,
robustability issues can occur. The controller could however control the systems even
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under strong noise which highlights one of the features of the terminal controller: Its
purpose is not to be applied directly, but to derive stability conditions from it. Thus,
potential robustability issues do not appear.

One last thought is that the derivations for the MPC controllers simply derived a terminal
cost and a terminal set. Therefore, it should be possible to extend the results from this
work with results on robust MPC. Albeit the simulations have already shown promising
results even under presence of strong noise, this could be advantageous: Depending on
how (in)accurate the estimation of the actuator error is, steady errors of the system model
can appear justifying the implementation of further methods for robustification.

On a more general level, micro-orbiting could seem like it might suffer from two
problems at first sight: The size of the radius in space-constrained environments and fuel
consumption. For the first concern, the radius can be chosen freely (ref. Eq. (4.6)) and
theoretically made infinitely small. This is a question of tuning as a too small radius can
lead to issues with the reachability of the terminal set. The simulated freeflyer, however,
emulates the Astrobee well in terms of dynamical behaviour and uses a micro-orbit that
measures 1m in diameter. This is enough for the application for example in the ISS.

The matter of fuel consumption needs consideration but does not present a significant
limitation: The primary fuel expenditure is already attributable to the failed actuators
- an unavoidable consequence of the failure. Furthermore, this approach deliberately
addresses actuator failure scenarios, which are by definition exceptional circumstances
rather than nominal operations. The system is designed for temporary operation in this
mode, either to facilitate a controlled return to a safe position or, in the case of satellites,
to execute a de-orbiting maneuver. As such, the additional fuel requirements for micro-
orbiting are justified within the context of emergency response operations and the fuel
storage can be assumed to be sufficient for this short-term operation.

6.5 Generalization to Different Systems

As a last part of this thesis, an outlook on possible extensions is given: As already intended
by design, the proposed control system is easily generalizable to different target systems
and requirements. Of especial interest is the generalization of the terminal controller
using eMPC which is considered in Section 6.5.4.

6.5.1 Generalization on the 3D Case

The derivations in this thesis were solely made for a two-dimensional model as this is a
model of the experimental platform here at KTH. The ultimate goal is however that the
results should be applied on actual three-dimensional space robots. For this, the model
only needs to be adjusted slightly:

Principally, the natural formulation of micro-orbiting in 3D consists of a direct transfer
from the 2D case: It also involves controlling a point on the line segment starting at the
center of the robot and directing along the virtual uncontrollable force. Equivalently, this
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point is in the distance r from the center, where r is again a suitably chosen radius of the
micro-orbit.

The only open question is how this orbit should be placed around the point which is
tracked: In the 2D-case, there is only one option as an orbit is, geometrically speaking, a
circle and there is only one way to place the circle around the target point. The orbit is
still a circle in the 3D-case, but a whole sphere exists around the tracked point and the
orbit could be any circle (with the same radius and center point as the sphere) that is
contained in the spere.

The decision which orbit is the best one to choose is not obvious: From a conceptual
perspective, the easiest way of thinking of it is to chose an orbit in a plane that is
perpendicular to the direction of the trajectory. This way, the movement on the orbit and
the movement along the trajectory can happen independently from each other. On the
other hand, reachability or energy efficiency might make a different selection the better
choice.

For a controller s.a. the first feedback-linearizing controller, it could be possible to refrain
from choosing a specific orbit at all. But for MPC-based controllers, the selection is
important as it determines the allocation of the control during the calculation of the
terminal sets.

6.5.2 Systems With Non-symmetric Actuators and Other Systems

The freeflyers that were used in this work have a symmetric structure where two thrusters
are placed on each side, and each one has the same maximal power. This does not need
to be the case for more general systems, and actually it is not even for the Astrobee: This
system has a different amount of thrusters on the x-axis than on the other two ones.

This is however not a problem at all, as micro-orbiting as a strategy is designed to deal
with the non-symmetrical errors that appear because of actuator failures and that cannot
be compensated for. When moving to unsymmetrical systems, the only statement that
is lost is that the system can be guaranteed to be stabilized for at least three failures.
The number of recoverable actuators is likely to be different and for a similar statement,
simply analysis of the new system is necessary in adaption of Chapter 3.

The idea of micro-orbiting can also be extended to systems outside of space: Essentially,
it uses the properties of the group SO(2)/SO(3) to its advantage where a continuous
rotation around a point, despite an ever-increasing angle, results in a constant distance to
the point. Thus, principally all bodies in SO(3) allow for such a movement given suitable
actuation.

Extending the concept even further leads to the question if completely different systems,
e.g. chemical plants, can also be controlled using a kind of micro-orbiting. This might
be possible, but needs more domain knowledge: Only if a limit-cycle around the desired
setpoint can be found, the advantages of orbiting come into play.
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6.5.3 Control for Non-constant Errors

Micro-orbiting in this work’s formulation relies on constant errors resulting from the
actuator failures. As discussed earlier in this chapter, it is however possible to robustify
the MPC controllers e.g. using tube-based MPC. In this case, an estimation error of the
actuator error is admissible. In a range limited by the tube-based design, fluctuations of
the actuator error can then also be allowed.

6.5.4 General Use of Explicit MPC in Terminal Controllers

A contribution of this work that might prove useful in the future is the novel structure of
the third MPC controller, which uses eMPC to enlarge the terminal set. The core idea
lies in designing a terminal controller that combines a feedback-linearizing module with a
linear eMPC controller. This combination serves two purposes: It extends the (terminal)
controller’s functionality beyond actuator saturation limits while simultaneously providing
a terminal cost function, an approach that has to the best of the author’s knowledge not
been proposed yet.

In order to be applicable, a feedback-linearization needs to be possible in a certain region.
If this is given, two more requirements need to be satisfied: First of all, a terminal cost
for the feedback-linearizing controller needs to be derived and the cross term between the
feedback-linearizing and the eMPC cost needs to be bounded. In the current formulation,
the eMPC controller is due to the mathematical complexity only calculated for the states
that are not contained in the feedback-linearizing controller. In mathematical terms, for
the system (

ẋ1

ẋ2

)
=

(
f1(x2) + Ax1

f2(x2)

)
+ g(x2)u

with constant matrix A and the nonlinear functions f1(x2), f2(x2) and g(x2), only x2 is
controlled by eMPC in the terminal controller. After the linearization step, x1 is in turn
controlled by a simple linear controller. Further research is needed to assess if and how
eMPC-based terminal controllers can be calculated for systems with a different structure.

The second challenge is finding a good control allocation between the feedback-linearizing
and the eMPC controller: As the combined control needs to satisfy the input constraints, it
is necessary to assign available controls for each controller individually. As demonstrated
in this work, sub-optimal solutions to the allocation problem may be preferable for
practical implementation.

Despite these two challenges, it has clearly been demonstrated in Figure 6.1 that the
benefits of this approach can be substantial. This novel combination of feedback
linearization and eMPC for terminal control opens up promising directions for expanding
the feasible region of MPC controllers in nonlinear systems, particularly when dealing
with input constraints.

Having presented the major contributions and findings, the next chapter concludes this
work with a summary and discussion of the results.



Evaluation | 83

(a) Evolution of state c and error e using κfb (b) Evolution of state c and error e using κ1

(c) Evolution of state c and error e using κ2 (d) Inputs using κfb

(e) Inputs using κ1 (f) Inputs using κ2

Figure 6.3: States and inputs of the different controllers for point stabilization.
Supplementary to Figure 6.2.
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(a) Path using κ1 (b) Path using κ2

(c) Evolution of state c and error e using κ1 (d) Evolution of state c and error e using κ2

(e) Inputs using κ1 (f) Inputs using κ2

Figure 6.4: Path, states and inputs of the MPC controllers for a circular
trajectory. κ2 starting from c =

(
5 5 0.2 0.3 0.5 0

)T and κ1 starting from c =(
0.2 0.5 −0.1 0.1 0.5 0

)T as the problem is infeasible with the other starting point.
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Chapter 7

Conclusion and Outlook

In this thesis, methods for the control under actuator failures of small, mobile space
robots such as the Astrobee or the SRL freeflyers are discussed. A literature review has
revealed that no suitable control methods under actuator failures exist for this kind of
system yet. While works exist on the control of satellites under actuator failures, the
small autonomous robots have different requirement that need to be considered during
control design. These come mainly from the need for collision avoidance and because these
autonomous robots are designed to be smaller, more cost-effective and lighter wherefore
they have fewer hardware redundancies. Thus it is desirable if they can use - both for the
nominal as well as for the faulty case - all available actuators to their full extent in order
to steer more agile maneuvers.

It has been found that Model Predictive Control is a suitable way of controlling these
systems, which is in line with the developments in recent years. The advantage is that
MPC can readily include the constraints that stem from actuator saturations and actuator
failures.

According to the analysis, the actuator failures for the freeflyers do not lead to the need
of a new control scheme if only one actuator fails. Instead, any control scheme that works
for the nominal case can be used with adapted constraints and costs after a compensation
of the error. This is not the case anymore for combinations of failures of two or three
actuators in which case nonholonomic constraints appear for the system. Compensation
of the resulting errors is in these cases not possible any more. An analysis of the number
of cases with different nonholonomic constraints concludes that it is hardly feasible in
practice to find a controller with guaranteed stability for each different case.

Thus, micro-orbiting is proposed as a viable strategy that allows to ensure stability for all
combinations of actuator failures with up to three failures. This means that the system
is brought on a small scale orbit, called micro-orbit, in which the partly compensated
actuator failures and the orbit dynamics cancel out. By this, full compensation is not
needed anymore and the remaining degrees of freedom for the inputs can be used to steer
the system to a setpoint or along a trajectory.
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A model is derived for the micro-orbiting system and in this formulation, the
nonholonomic constraints disappear and the system becomes controllable. Three different
controllers are designed, one for point-stabilization based on feedback-linearization and
two for trajectory-tracking based on MPC. The two different MPC controllers differ in
the design of the terminal controllers, and thus also terminal costs and sets. The terminal
controller for the second MPC controller uses a combination of feedback-linearization and
eMPC which allows for the derivation of a large terminal region.

Finally, the controllers are implemented and their performance is evaluated in a
simulation. It is found that the feasible set for the first MPC controller could be too small
because of a small terminal set. Depending on the hardware on which it is implemented,
a large enough MPC horizon could be chosen to counteract this problem. This is however
not the best option as the terminal, and thus also the feasible, set for the second MPC
can be made even larger than necessary, thus exceeding the requirements. It is concluded
that the second MPC controller is the preferred choice if the hardware requirements are
satisfied for the implementation of an MPC scheme. Otherwise, the feedback-linearizing
controller could be an alternative.

In future works, an experimental validation of the controllers on the physical freeflyers in
the KTH Space Robotics Lab is planned. It is aimed for working on the generalizations
discussed in Section 6.5, such as the generalization of micro-orbiting to 3D systems.

It is further of interest if and how the terminal controller using eMPC can be generalized
for other systems. This could have the potential to increase the terminal sets of future
MPC controllers and to reduce their computational requirements as smaller horizons can
be chosen.

As a last point, a formal robustification of the presented methods could increase the level
of safety that the controllers give. As the fault-detection methods employed together with
the controller may not be 100% accurate, incorporating robust control techniques could
enhance the system’s resilience to uncertainties.

To summarize, this thesis contributes to the development of failsafe control schemes for
autonomous space robots. The presented methods can handle the failure of up to three
thrusters for the freeflyers at SRL.
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Appendix A

Control Allocation

In Section 3.1.2, the model was formulated using the resulting force and torque F ∈ R3

for simplicity. This approach simplifies the control problem by avoiding the need for the
controller to handle ambiguities arising from different input combinations that produce
the same system behavior. Generally, it is desirable to utilize the lowest-energy input
to maximize to maximize battery life and operational duration. The system described
here is also referred to as a control allocator in the literature. It’s worth noting that the
presented solution can be easily reconfigured by adjusting the input bounds.

The problem of control allocation can be formulated as a constrained convex optimization
problem of the form

minimize
Fi,j

1

2
F T

i,jFi,j (A.1a)

subject to F = DFi,j + Ffault, (A.1b)
0 ≤ Fi,j ≤ Fbound (A.1c)

where for each element of Fbound holds

Fbound,i,j =

{
Fmax if actuator is working
0 if actuator has failed

(A.2)

This problem can easily be solved using standard numerical solvers.

It is however also possible to solve the problem explicitly, allowing for faster solution
times. This is described in the following: First of all, as for all thrust forces holds Fi,j ≥ 0,
another representation for the inputs can be

Fi = Fi,1 − Fi,2, i = 1, 2, 3, 4 (A.3)

where the constraints can be given as

Fi ∈ [Fi−, Fi+]. (A.4)
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Note that two opposing failed thrusters simply imply Fi = Fi− = Fi+. Then the
underdetermined system simplifies to

F − Ffault =

F des
x

F des
y

F des
T

 =

1 1 0 0

0 0 1 1

d −d d −d



F1

F2

F3

F4

 (A.5)

respectively

F des
x

F des
y

F des
z

 =

1 1 0 0

0 0 1 1

1 0 1 0



F1

F2

F3

F4

 (A.6)

where F des
z = 1

2

(
F des
x + F des

y +
Fdes
T

d

)
.

The latter equation can be used to derive the sets of possible input combinations that
satisfies the constraint Eq. (A.4) as well as the input constraints: Fix the third variable
F3 = c from which follows the solution of Eq. (A.6)

F3 = c (A.7a)
F4 = F des

y − c (A.7b)
F1 = F des

z − c (A.7c)
F2 = F des

x − F1 = F des
x − F des

z + c. (A.7d)

From the constraints in Eq. (A.4) and Eq. (A.7), the according constraint for c follows as

c ∈ C = [max(F3−, F
des
y − F4+, F

des
x − F1+, F

des
x − F des

z + F2−),

min(F3+, F
des
y − F4−, F

des
x − F1−, F

des
x − F des

z + F2+)]
(A.8)

with which the optimization problem can be reformulated as an optimization in one
variable as

minimize
c

1

2
(F 2

1 + F 2
2 + F 2

3 + F 2
4 ) (A.9a)

subject to c ∈ C, (A.9b)
Fi as by Eq. (A.7). (A.9c)

All solutions for this optimization problem satisfy constraint A.1b and the optimal solution
can simply be found by derivation of Eq. (A.9a) for c and checking of the boundary
constraints.
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Appendix B

Simulation Parameters

At this place, the parameters used for the simulation in Chapter 6 are given. The physical
values were taken from [7] and stem from the freeflyers in KTHs Space Robotics Lab.

Parameter Value
Physical parameters
m 14.5 kg

J 0.370 kgm2

d 0.14m

Fmax 1.75N

Simulation environment
Sampling time environment δenv 0.01 s

Sampling time controller δ 0.1 s

Noise on position Uniform distribution in the range of of
δenv[−0.25m, 0.25m]

Noise on orientation Uniform distribution in the range of of
δenv[−0.25 rad, 0.25 rad]

Failed actuators F3,1 = F4,1 = Fmax

Controller tuning
Radius r for micro-orbiting (ω0 follows
from the virtual fault)

0.5m

Feedback controller κfb

State cost for calculating the feedback
gain

diag
(
1 1 1 1 1

)
Input cost for calculating the feedback
gain

diag
(
10 10 10

)
MPC controller κ1 using linear feedback
MPC horizon 20 steps
State cost Qe diag

(
5 5 0.2 0.2 100

)
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Control cost Qu diag
(
1 1 1

)
State cost for calculating the linear
controller

diag
(
1 1 1 1 1

)
Control cost for calculating the linear
controller

diag
(
10 10 10

)
MPC controller κ2 using eMPC
MPC horizon 20 steps
State cost Qe diag

(
1 1 1 1 1

)
Control cost Qu diag

(
0.1 0.1 0.1

)
kω 0.1

eMPC state cost Q̂e diag
(
1 1 1 1 1

)
eMPC control cost Q̂u diag

(
10 10 10

)
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