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Abstract— With the rise of interest in space robotics, both
from an academic and industrial point of view, the need for
standardization of testing facilities is ever greater. Providing an
open-source solution that multiple parties can use and share
improvements on becomes pivotal for supporting research and
technology transfer roles, accelerating the progress in autonomy
for this field. In this short note, we present an adaptation of
the PX4 software stack for usage with spacecraft analogs and
space robotics facilities. We showcase the proposed architecture,
controllers, and interfaces both in simulation and at the space
robotics laboratory in KTH.

I. INTRODUCTION

Space robotics has recently become popular to augment
space systems with recent progress in decision-making ca-
pabilities developed for terrestrial systems. Due to the chal-
lenges in sending hardware to orbital environments, ground
experiment testbeds such as CAST Spacecraft Simulator [1],
ESTEC’s Orbital Robotics Lab [2], and SNU’s Zero-G labo-
ratory [3] are vital for space research. However, conducting
experiments is still expensive and challenging due to the use
of custom-built software and inaccessible hardware.

Providing an open-source solution for space robotics
would be pivotal for supporting research and technology
transfer roles. MIT SPHERES [4] and NASA Astrobee [5]
have paved the way for the space robotics community to
make space-deployed hardware more accessible, anchored by
open-source software and simulation tools. However, these
software are developed for a specific hardware which doesn’t
scale to other platforms.

Generic open-source hardware [6] and software [7] have
had a major impact on accelerating aerial robotics research.
Such shared hardware and software infrastructure within the
aerial robotics community has allowed researchers to focus
on the key research problems.

In this work, we present an adaptation of the PX4 Auto-
pilot [7] for space robotics. We take advantage of the generic
architecture of PX4, to create a generic hardware-agnostic
software framework for space robotics. We showcase the
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proposed framework in a software-in-the-loop (SITL) sim-
ulation which can be easily transitioned to a hardware plat-
form available at the Space Robotics Laboratory1 in KTH,
Sweden. Our key contributions are i) addition of interfaces
for thruster-based control allocation; ii) custom modules for
space robotics; iii) a development environment using SITL
for testing control systems; and iv) demonstration on 2D
spacecraft hardware. The remainder of the paper is organized
as follows: an overview of the system architecture is provided
in Section II; results are shown in Section III; and concluding
remarks are discussed in Section IV.

II. ARCHITECTURE

In this section we provide an overview of the developed
interfaces. The source code of PX4Space, along with an
accompanying QGroundControl interface, are available at:
https://github.com/DISCOWER/PX4-Space-Systems
https://github.com/DISCOWER/qgroundcontrol

A. Control

We show the control scheme implemented in the
PX4Space Firmware as shown in Fig. 2. The control system
is composed of three cascaded PI and PID controllers. The
cascaded loop structure allows using PX4Space as a low-
level controller of multiple levels to evaluate different control
methods. The Position controller receives a position setpoint
p and regulates it through a PI controller, generating an
internal velocity setpoint tracked by a PID for the velocity
error. An attitude setpoint β = {fref ,qref} is generated,
corresponding to a body-frame thrust and a target attitude
setpoint, respectively. The attitude controller implements a
P-controller to regulate the attitude reference, generating an
angular rate setpoint γ = {fref ,ωref}. Lastly, the rate
controller generates a wrench setpoint δ = {fref , τref},
through a PID to converge the angular velocity to the target.

To actuate each thruster on the platform, the wrench
setpoint δ is processed by the control allocator (CA) module.
The platform geometry is defined by configuring the location
of each thruster, along with its effectiveness. For details, we
refer the reader to the airframe 70000_spacecraft_2d
in the codebase. The CA then sends a normalized thrust to
each actuator i, fi ∈ [0, 1], as a PWM signal.

It is worth noting that the above setpoints are specific to
the implementation of the cascaded loop structure. Due to the
modular structure of PX4, it is easy to add a custom module.
Moreover, these setpoints can be generated not only from

1Website: www.discower.io, accessed on 29th of May, 2024.
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(a) SITL performance. In the background, the simulated platform. (b) Hardware test. In the background, the lab platform used.

Fig. 1: Attitude control performance in SITL and on 2D spacecraft hardware in KTH.
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Fig. 2: Cascaded control scheme implemented in PX4Space.
The references p,β,γ, δ represent position, attitude, rate,
and thrust/torque setpoints, respectively.

a module or through manual inputs, but also via external
entities such as an onboard computer.

B. Software-in-the-Loop Simulation

The SITL simulation environment utilizes the POSIX
compatibility of PX4, where the firmware can be simulated
directly on any POSIX environment. This allows running
the firmware directly on the laptop allowing to easily and
accurately simulate the firmware as it would be deployed on
real hardware. We use Gazebo-Classic [8] as the dynamics
simulator, where PX4 communicates with the simulator via
the MAVLink protocol. The simulated gas thrusters2 are a
latching force model given by fthrust = fmaxλ where, λ is
1 during the on part of the PWM duty cycle.

III. EVALUATION

We present preliminary results both in SITL and Hardware
for our attitude control modules. We encourage the reader to
test these and more modules on the provided codebase.

The target platform is a 2D spacecraft available at KTH
Space Robotics Laboratory. The system weighs 12.5 kg with
dimension of 40 cm in diameter and 50 cm tall. The system
has eight cold gas thrusters, which use compressed air to
generate thrust outputting a maximum of 1.4 N. The avionics
consists of a flight management unit (FMU) and a mission
computer. The FMU executes the low-level controls and
communicates with ROS 2 over the XRCE-DDS bridge.
This allows communicating directly through the internal
messaging system of PX4. Local position is provided through
a Qualisys motion capture system to the hardware platform.
On the hardware platform, the vehicle is equipped with
a Pixhawk V6X FMU and a Jetson Orin for the mission
computer. A simulated version of the platform was created
in Gazebo-Classic.

2Available at: https://github.com/PX4/PX4-SITL_
gazebo-classic/tree/pr-thruster-plugin

Manual setpoints are provided to the platform both in sim-
ulation and in hardware. The performance of the system is
shown in Fig. 1, with dashed lines representing setpoints and
solid lines the measured state. The setpoints are appropriately
tracked during the entire motion.

IV. CONCLUSIONS AND FUTURE WORK

In this work we proposed an adaptation of PX4 Autopilot
project, PX4Space, for space robotics research in a laboratory
environment. The solution enables testing in SITL simulation
and a seamless transition to hardware testing. Preliminary
results show the proposed software in two different control
modes. For future work, compatibility with other infrastruc-
ture in the PX4 ecosystem, such as QGroundControl would
provide even more opportunities for development.
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