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Abstract— Load transportation in micro-gravity environ-
ments is a challenging task for autonomous vehicles, but a cru-
cial one considering the ever-increasing amount of space debris
and the need for on-orbit assembly. We propose centralized
and decentralized Model Predictive Controllers to transport
passive loads. Realistic numerical simulations illustrate the
performance of the proposed controllers for different load
setpoints. While centralized controllers provide better transient
performance, their computational cost makes the optimization
problem intractable for more than a few agents involved in the
collaborative task. On the other hand, decentralized controllers
achieve faster computation time and do not suffer from the
curse of dimensionality, at a small cost in performance.

I. INTRODUCTION

The transportation of loads in microgravity environments
has had applications ranging from cargo transportation [1]
to autonomous on-orbit assembly [2]. As the number of
satellites increases [3], [4], autonomous de-orbiting of space
debris has also become of major importance for successful
future space missions. Indeed, the task of autonomous load
transportation is of major importance for future robotic
exploration and observation missions, directly and indirectly.

Load transportation with autonomous agents is typically
done using manipulators [5] or tethers [6]. Although ma-
nipulators provide more degrees of freedom for controlling
a load pose, they are heavier than cabled systems and more
expensive to deploy. Although tethered transportation is well-
studied in the unmanned aerial vehicles (UAV) literature,
such is not the case for autonomous spacecrafts.

There exists a considerable body of work around space
tethers, [7]–[10]. On autonomous operations with tethered
loads, [11] proposes adaptive controllers to stabilize a tar-
get, chaser, and manipulation system that can accommodate
manipulators attached to tethers. In [12], a control scheme
capable of stabilizing a cooperative partially failed satellite
is proposed. When active control of a reel is available, [13]
proposes a Robust Model Predictive Control (MPC) scheme
to control the system and tether tension. For passive tethers,
[14] proposes the design of Linear Quadratic Regulators and
Sliding Mode controllers for active deorbiting.

Multi-agent load transportation for active debris removal
seems to be far scarcer. However, the case for multi-agent
missions is strong: more agents are more robust to individual

†S. Phodopol, P. Roque and D. V. Dimarogonas are with the Division
of Decision and Control Systems, KTH Royal Institute of Technology,
Stockholm, Sweden. E-Mail: {sujet, padr, dimos}@kth.se.
Sujet Phodapol and Pedro Roque contributed equally to this work.

This work was supported by the H2020 ERC Grant LEAFHOUND,
the Swedish Research Council (VR), the Knut och Alice Wallenberg
Foundation (KAW), and the Wallenberg AI, Autonomous Systems and
Software Program (WASP) DISCOWER funded by KAW.

Fig. 1: System architecture with free-flyers transporting a load using tethers.

failures while being able to perform transportation tasks
faster due to the larger amount of collective thrust available.
In [15], a path-planning scheme is used to optimize multiple
agents to collaborate on a debris removal task. In [16], the
authors approach the coordination scheme from a game-
theoretic perspective for collaborative space-debris removal.

In this work, we propose the use of MPC to solve a
collaborative load transportation task in microgravity envi-
ronments. The controllers are deployed in a centralized and
decentralized manner, and the performance is compared with
respect to transient behavior and computational time. The
decentralized approach does not require communication be-
tween the agents, at the expense of worse transient response
when compared to centralized or distributed approaches.
However, it can be implemented in scenarios where commu-
nication is difficult or costly. In short, the contributions of
this work are (i) providing a generalized framework to model
and calculate the tension force for the multi-agent tethered
system, (ii) proposing a centralized and decentralized MPC
controller to achieve a load transportation task, (iii) compare
the performance of the two controllers on the same testing
conditions, and (iv) provide an open-source implementation
of the proposed control schemes.

The paper is divided as follows: first, we introduce the
tethered system model in Section II, then we describe the
system equilibrium in Section III. Sections IV and V provide
the formulations for centralized and decentralized MPCs.
Sections VI and VII detail the implementation of these
controllers for comparative testing, and the respective results.
Lastly, Section VIII concludes the paper and suggests future
research directions.

Notation: Small, bold letters represent vectors. Matrices
are denoted by bold, capital letters. Regular letters denote
scalars. a× denotes the skew-symmetric matrix representa-
tion of a, and aT the transpose of a. Calligraphic letters
denote reference frames, and the basis vectors of a frame
A are denoted {ax,ay,az}. The inertial reference frame is
generally omitted. Sets are defined in blackboard bold, A.
The weighted vector norm

√
xTAx is denoted ∥x∥A.
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II. BACKGROUND

In this section, we describe the Newton-Euler dynamics
of free-flyers, i.e., thruster-actuated robotic systems with
holonomic motion in 6 degrees of freedom (DOF). Then,
we extend the system dynamics to consider the motion with
a tethered load, and finally, we present the dynamics of the
full collaborative transportation system, where multiple free-
flyers collaboratively transport the same load.

Consider an inertial frame E defined by three orthogonal
axis {ex, ey, ez}, and the body-fixed frame B = {bx, by, bz}.
We define the free-flyer’s inertial position as p, its velocity as
ṗ = v, its mass as m, its rotation matrix with respect to the
attitude quaternion q as Λ(q), its thrust as F , its body-frame
angular velocity as ω, its inertia as J and its body-frame
torque as τ . Λ(q) and Ω(ω) are defined in [17, Eq. (92)]
and [17, Eq. (108)], respectively. The dynamics of the free-
flyer can be written as ṗ = v, v̇ = m−1(Λ(q)TF ), q̇ =
0.5(Ω(ω))q, ω̇ = J−1(−ω×Jω + τ ). Each free-flyer
has 12 thrusters, as in fig. 1. The force F and torque τ
is therefore decomposed into six input pairs ui, i = 1, . . . , 6
concatenated in u = [u1, . . . , u6]

T , where each ui actuates
a pair of thrusters (one for positive and one for negative
values). We then write the thrust F and torque τ with the
thrusters’ direction and arrangement matrices D and L as

F = Du =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

u, and

τ = Lu = larm

0 0 0 0 1 −1
1 −1 0 0 0 0
0 0 −1 1 0 0

u,

where larm is the torque length arm with respect to the free-
flyer’s center of mass.

Multiple Free-flyers with a Tethered Load

The system consists of M ≥ 2 free-flyers attached with
tethers to a load. When modeling the multiple rigid-bodies,
we use the subscript i to refer to free-flyer i and the subscript
L for the load. The tension applied by the tether on system
i is written as Ti. The Newton-Euler equations of agent i
(1a)-(1d) and the load (1e)-(1h) can then be described as:

ṗi = vi, (1a)

v̇i = m−1
i , (ΛT

i (qi)Fi − Ti), (1b)

q̇i =
1

2
(Ωi(ωi))qi, (1c)

ω̇i = J−1
i (−ω×

i Jiωi + τi − ri × (Λi(qi)Ti)), (1d)
ṗL = vL, (1e)

v̇L = m−1
L (T1 + T2), (1f)

q̇L =
1

2
(ΩL(ωL))qL, (1g)

ω̇L = J−1
L (−ω×

LJLωL +

2∑
i=1

rLi × (ΛL(qL)Ti)), (1h)

where ri is the tether attach point in the body frame of
agent i = 1, ...,M and rLi is the tether attach point on the

load body frame, for the tether of agent i. Fig. 1 illustrates
this scenario. To facilitate the reference to these variables,
we introduce the state variable xi = [pT

i ,v
T
i , q

T
i ,ω

T
i ]

T ∈
R9×SO(3), i = 1, . . . ,M,L. Both the control inputs ui and
states xi constraints are defined by polytopes, as is common
in MPC frameworks [18], and defined according to

Ui := {u ∈ R6 : umin ≤ ui,[j] ≤ umax, j = 1, . . . , 6}, (2)

Xi := {x ∈ R9 × SO(3) : pmin ≤ pi,[j] ≤ pmax∧
vmin ≤ vi,[j] ≤ vmax ∧ ωmin ≤ ωi,[j] ≤ ωmax

∧ ∥qi∥ = 1, j = x, y, z}, (3)

where ⋆min, ⋆max are the lower and upper bounds for each
variable, respectively.

In the tethered scenario, tension forces are the internal
forces that can be calculated from the states of all agents
and their thrusts. The tension must respect the tether length,
which needs to remain constant (i.e., all cables need to be
in tension). Thus, we introduce the constraint

ψi = l2i = ||(pi +Λ(qi)
Tri)− (pL +Λ(qL)

T rLi )||2. (4)

By differentiating eq. (4) twice, the tension in each cable can
be written in a closed form as a function of the states and
inputs in the form of

α1,1 α1,2 · · · α1,M

α2,1 α2,2 · · · α2,M

...
...

. . .
...

αM−1,1 αM−1,2 · · · αM−1,M

αM,1 αM,2 · · · αM,M




T1
T2
...

TM−1

TM

 =


ζ1
ζ2
...

ζM−1

ζM


(5)

where each component is defined as

ϕi =

(
mi +mL

mimL

)
I3 −ΛT

i r
×
i J

−1
i r×i Λi

−ΛT
Lr

L×
i J−1

L rL×
i ΛL,

µi = ΛT
i

(
Fi

mi
− r×i J

−1
i (γi + τi) + ω×

i ω
×
i ri

)
−ΛT

L

(
−rL×

i J−1
L γL + ω×

Lω
×
L r

L
i

)
,

σi,j =

(
I3
mL

−ΛT
Lr

L×
i J−1

L rL×
j ΛL

)
,

αi,i = ϕin̂i · n̂i,

αi,j = σi,jn̂j · n̂i,

ζi = µi · n̂i +
|| · ||2i
li

,

and where we introduce the shorthand notation Λ(·) :=
Λ(·)(q(·)), γ(·) := −ω×

(·)J(·)ω(·), || · ||2i := (v′
i − vsi) ·

(v′
i−vsi), ni := (ai−aL

i )/(∥ai−aL
i ∥). Then, the tension

force in the cable of each robot can be calculated by solving
eq. (5). For a complete derivation, see [19]. We formalize
our problem definition as follows:

Problem 1. Given the system in (1), design control inputs u1

to uM such that the load L is asymptotically stabilized to a
desired state x̄L, respecting the control and state constraints
in (2) and (3), respectively.
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Fig. 2: The geometry representing the equilibrium configuration i defined
by connecting all the anchor points.

III. SYSTEM EQUILIBRIUM

The tethered system with more than one robot has more
than one equilibrium point due to redundancy. In this work,
we propose a generalized method to find one specific equi-
librium point which is the center of geometry created by
connecting all the anchor points as shown in Fig. 2. At this
point, we assume all robot attitudes to be the same as the
load. Thus, we can find the center of equilibrium c of the
geometry as c =

∑M
i=1 ai

M where M is the number of agents
and ai are the tether attach points in the inertial frame E ,
given by ai = pi+Λ(qi)

Tri. Next, the unit direction vector
b̂i from the center of equilibrium and the positions pi of each
agent can be derived as

b̂i =
ai − c

||ai − c||
, pi = ai + (li + ||ri||)b̂i, i = 1, . . . ,M.

(6)

IV. CENTRALIZED CONTROLLER

To solve the collaborative load transportation problem, we
use MPC [18]. MPC is a Finite-Horizon Optimal Controller
(FHOC) that minimizes a cost function J(x̄i,xi,ui) charac-
terized by a desired system state x̄i, the current and predicted
states xi, and control input ui. The cost is minimized along
a receding horizon of length N , while taking into account
the discrete system model of f(xi,ui). The optimization
problem is constrained by state and control sets Xi and Ui,
as well as by state and control-dependent constraints lg ≤
g(xi,ui) ≤ ug , where lg and ug are upper and lower bounds
on a nonlinear constraint defined by g(xi,ui). We will
appropriately design these variables to achieve the desired
formation control task. Formally, we write the centralized
MPC FHOC as

minimize
x,u

J(x̄,x,u) (7)

subject to: x(k + n+ 1|k) = fd(x(k),u(k)),

x(k + n|k) ∈ X,
u(k + n|k) ∈ U,
x(0|0) = x(0),

n = 0, . . . , N − 1,

where x = [xT
1 , ...,x

T
M ,x

T
L]

T , u = [uT
1 , ...,u

T
M ]T , X =

X1× ...×XM ×XL, U = U1× ...×UM , and fd(x(k),u(k))
corresponds to the discretized dynamics in eq. (1) obtained
through a fourth order Runge–Kutta (RK4). The desired state

x̄ is defined as feasible setpoints for the dynamical system
in eq. (1). The cost function to minimize is defined as

J(x̄,x,u) =

N−1∑
n=0

l
(
x̄(k + n|k),x(k + n|k),u(k + n|k)

)
+ V

(
x̄(k + n|k),x(k + n|k)

)
,

l
(
x̄,x,u

)
= ∥e(k + n|k)∥2Q + ∥u(k + n|k)∥2R,

V
(
x̄,x

)
= ∥e(k +N |k)∥2QN

,

e(k + n|k) =

{
x̄(k + n|k)− x(k + n|k),x = [p,v,ω]

1− (x̄(k + n|k)Tx(k + n|k))2,x = [q]

where 1−(q̄(k+n|k)Tq(k+n|k))2 represents the quaternion
distance [20]. In this scenario, and to keep control over the
load, the cables must remain tensioned during the transport
task. To this end, we add to eq. (7) the non-linear constraint
nT

i Fi < 0, ni = ai − aL
i /∥ai − aL

i ∥, i = 1, . . . ,M,
where aL

i is the inertial tether attached point in the load,
given by aL

i = pL + Λ(qL)
TrLi . Such constraint ensures

that the force is always applied in the half-plane opposite to
the cable direction, enforcing cable tension during operation.

A. Tension Function Approximation

As seen in eq. (5), the tension variables are a highly
nonlinear function of the system state. Solving in real-time
the optimization problem in eq. (7) is then hard to achieve.
To improve the real-time capabilities of the centralized con-
troller, we propose another way to formulate the optimization
problem. In [21], instead of explicitly computing the tension
force in terms of states and input, one can reduce the non-
linearity and complexity of the original nonlinear dynamics
of the system by introducing a Lagrange formulation. To
simplify, the cable tension in the tethered system can be
reformulated in terms of the interaction force between a
group of agents and load with Lagrange multipliers λi ∈ R
according to Ti = λi(a

L
i − ai), i = 1, . . . ,M, where

M is the number of agents and λi a variable to be mini-
mized. Moreover, we introduce an additional constraint on
the second derivative of eq. (4), ψ̈i = 0, implemented as
inequality constraints in a discrete-time manner [21] with
∥Ψi (xi(k + n|k),ui(k + n|k), λi) ∥ ≤ ϵi i = 1, . . . ,M, for
a small ϵi. The optimized centralized MPC formulation is
then formulated as

minimize
u,λ

J(x̄,x,u) (8)

subject to: x(k + n+ 1|k) = fd(x(n|k),u(n|k)),
x(k + n|k) ∈ X,
u(k + n|k) ∈ U,
|Ψi(k + n|k)| ≤ ϵi, i = 1, . . . ,M,

nT
i Fi < 0, i = 1, . . . ,M,

Ti = λi(a
L
i − ai), i = 1, . . . ,M,

x(0|0) = x(0),

n = 0, ..., N − 1.
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Fig. 3: A single agent performing decentralized transportation considering
virtual tension forces for each neighbor.

V. DECENTRALIZED CONTROLLER

Centralized controllers suffer from the curse of dimension-
ality as we increase the number of agents for the optimization
problem. To mitigate this problem, we propose a decentral-
ized controller that solves a part of the optimization problem
locally by approximating the behavior of the neighboring
agents given the transportation task.

The proposed decentralized scheme assumes that each
neighboring agent applies a constant tension Tvir as in fig. 3.
Inspired by [22], we propose a simple method to estimate this
tension using the equilibrium force. The equilibrium force is
the force that each agent must apply to the load to maintain
an equilibrium pose while the cables remain tensioned. This
force can be approximated as a constant in the equilibrium
direction b̂ as described in (6), which can be calculated as
Tvir = γb̂, where γ is a tuning parameter. The reasoning
is that if each agent expects other agents to keep the load
in the equilibrium position, then this agent will solve the
optimization problem as if it is the only agent that will
apply the force to move the load to the desired position.
As a result, all the agents collaborate to move the load to
the desired position. Additionally, each agent is assumed to
control only a fraction of the load, given by m′

L = mL/M
and J ′

L = JL/M , where M is the number of agents. Then,
the dynamics of the ith subsystem can be described similarly
to (1), where (1f) and (1h) are replaced by

v̇L = m′−1
L

Ti +

M−1∑
j=1

Tvirj

 , and

ω̇L = J ′−1
L (−ω×

LJ
′
LωL + rLi × (ΛLTi)

+

M−1∑
j=1

rLj × (ΛLTvirj )).

The decentralized MPC controller for the agent i is then

minimize
u,λ

J(x̄i,xi,ui) (10)

subject to: xi(k + n+ 1|k) = fd,dec(xi(n|k),ui(n|k)),
xi(k + n|k) ∈ Xi,

ui(k + n|k) ∈ U,
|Ψi(k + n|k)| ≤ ϵi,

nT
i Fi < 0,

Ti = λi(a
L
i − ai),

xi(0|0) = xi(0),

n = 0, ..., N − 1,

i = 1, ...,M.

Fig. 4: Numerical Simulator in Python 3, containing a load, in green,
transported by three agents, red, blue, and pink, through three different
setpoints represented as cartesian frames.

Fig. 5: Gazebo simulator displaying a prismatic and two revolute joints
between each robot and load, used to emulate the cable behavior.

VI. SIMULATION SETUP

To evaluate the controllers proposed in Sections IV
and V, we designed numerical experiments in Python and
ROS 2. The Python 3.10 simulator is shown in fig. 4
and its source code is available in https://github.
com/pSujet/transport_mpc, while the ROS 2 Foxy
Gazebo simulator shown in fig. 5, designed to recreate
the experimental conditions in the Space Robotics Labo-
ratory at KTH, is available in https://github.com/
DISCOWER/discower_transportation. All simula-
tions ran in an AMD Ryzen 7 5800HS @ 2.8 GHz with 8
cores, 16 threads, and 16GB of DDR4 RAM @ 3.2 GHz.
The controllers were implemented in CasADi [23].

VII. RESULTS

We ran a total of 3 tests representing the centralized
controller in eq. (7), the centralized controller with the
reduced model in eq. (8), and the decentralized controller
in eq. (10). First, we tested the controllers in the numerical
simulator with arbitrary values of mass and inertia used for
both the agents and the load. This experiment displays the
controllers’ capability to transport the load while following
the desired setpoints in 6 DoF. Then, we implemented the
reduced model and decentralized controllers in ROS2 and
tested them in Gazebo, which includes realistic models of
the platforms available in the laboratory and a Pulse Width
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Fig. 6: Performance of the centralized controllers (explicit and im-
plicit/reduced tension models), and the decentralized controller.

Fig. 7: MPC cost and computational time for the three proposed controllers.
The average computation time for each controller is displayed by the red
dashed line.

Modulation (PWM) plugin that implements the required
forces in the platform body in 3 DoF.

A. Numerical Simulations

In the first experiment, we demonstrate the proposed con-
trollers in three-dimensional space, and the results are shown
in fig. 6. Three agents are the minimum number of agents
to control the load in all translation and rotation axes fully.
There are 52 states and 18 inputs for the system. The exper-
iment is conducted in a numerical simulation and controlled
to move the load from the origin (0, 0, 0) to (1, 1, 1) (1 meter
in all axes) with a rotation of 45 degrees in x-y-z axis order.
The target quaternion is (0.191, 0.462, 0.191, 0.845), where
each component corresponds to x, y, z and scale factor,
respectively. As shown in Fig. 7, the controllers require
3.36s and 0.92s of average computing time, respectively.
Thus, the centralized controllers cannot be implemented in
real-time. The decentralized controller achieves a maximum

Centralized Centralized (R) Decentralized
µ Pos. Error [m] 0.198 0.225 0.459
σ Pos. Error [m] 0.466 0.461 0.548
µ Quat. Distance [u] 0.087 0.110 0.124
σ Quat. Distance [u] 0.228 0.226 0.247
Max. CPU time [s] 4.63 1.54 0.49
µ CPU time [s] 3.36 0.92 0.33

TABLE I: Statistical results corresponding to the numerical experiments
performed on all controllers, where µ represents the mean and σ the standard
deviation of each quantity.

computational time of 0.49s (first iteration with cold-start)
and an average of 0.33s, which allows for a real-time
implementation. We observe a trade-off between the cen-
tralized and decentralized control schemes on what respects
performance and time-to-solution. In particular, since the
decentralized case relies on the assumption that our neigh-
bors apply the virtual torque in the equilibrium position, the
transient behavior is worse than in the centralized case. The
collected statistics regarding the controllers are presented in
Table I where the samples were collected for 8s following the
triggering of a new reference. Nonetheless, the task is still
achieved with the proposed decentralized scheme, and can
scale with the number of agents, while remaining real-time
feasible considering a 1 Hz actuation frequency.

B. Gazebo Simulations

Lastly, we present the results portraying the 2D transporta-
tion task in fig. 8, using ROS2 and Gazebo. A single ROS2
node implemented the MPC problem for the centralized sce-
nario and directly actuated each agent. In the decentralized
case, however, each MPC controller was implemented as an
individual node, running on the same multi-core computer
as a separate thread, resembling running the experiments on
two different computers onboard each vehicle. In Gazebo,
a plugin was developed for PWM emulation, simulating
the thrusters’ behavior on the platform by transforming the
desired input forces into PWM signals. The implemented
controllers were the reduced model MPC (centralized), and
the decentralized approaches, with 2D dynamics, and Euler
discretization. The goal here is to test the controllers against
a more accurate model than in the numeric simulation case.

We experiment by moving the load following four de-
sired poses: translation in the x direction to (0.2, 0, 0),
a translation in the y direction to (0.2, 0.2, 0), a rotation
of 15 degrees counterclockwise around the z-axis to pose
(0.2, 0.2, π/12), and lastly a combination of translation and
rotation by moving the load to the final position (0.4, 0, 0).
Note that the non-optimized centralized controller could not
run in real-time for two agents, and therefore it was not
implemented. From fig. 8, we observe that both approaches
perform well, with the centralized approach overshooting less
when the combined maneuver is triggered. This is expected,
as the decentralized approach approximates the model to
the nominal case, contrary to the centralized one. When a
combined maneuver is triggered with a large error, then the
system transient will deviate from the nominal equilibrium
state, leading to an overshoot. However, when we observe
the computational time, the decentralized approach is almost
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(a) Performance of the centralized controller. The verti-
cal dashed line shows the trigger to the next pose.

(b) Performance of the decentralized controller. The
vertical dashed line shows the trigger to the next pose.

(c) Computation cost (CPU time) of each proposed controller.

Fig. 8: Performance and computational cost for the centralized and decentralized controllers.

twice as fast as the centralized one, even in the 2-agent
scenario. As the number of agents increases, this difference
is expected to become more significant, as we can observe
in fig. 7. The decentralized controller computational time
would, by design, remain be the same.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed and compared three controllers
for micro-gravity tethered load transportation: two central-
ized and one decentralized MPC approach. We compared in
numerical and realistic simulations the performance of the
centralized and decentralized algorithms, concluding that the
decentralized approaches outperform, in computational time,
the centralized ones. However, it is also possible to observe
the trade-off between the centralized and decentralized sce-
narios when looking at the transient performance.

For future work, we plan to extend the decentralized
approach into a distributed one, taking advantage of possible
real-time communication between the agents to maintain
the computational time low, while improving the transient
behavior. Furthermore, we are currently looking into imple-
menting these controllers on hardware to understand how
they handle the discrepancies between simulated and real
dynamics, including possible disturbances.
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